9.設(shè)定義域?yàn)镽的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(0,+∞),(x1-x2)[f(x1)-f(x2)]>0,則f(-π)>f(3.14).(填“>”、“<”或“=”)

分析 根據(jù)已知分析出函數(shù)的單調(diào)性,結(jié)合函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),可得答案.

解答 解:∵函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(0,+∞),(x1-x2)[f(x1)-f(x2)]>0,
∴函數(shù)f(x)在(0,+∞)上為增函數(shù),
又由函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),
故f(-π)=f(π)>f(3.14).
故答案為:>.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)的單調(diào)性,函數(shù)的奇偶性,函數(shù)求值,難度中檔

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12]
①估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率P;
②假設(shè)該校每個(gè)學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率都為P,試求從中任選三人至少有一人每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
男生女生總計(jì)
每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí)453075
每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)16560225
總計(jì)21090300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線y=(x+1)ex在點(diǎn)(0,1)處的切線方程為y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)θ為銳角,且$tanθ=\frac{{tan\frac{7π}{4}}}{{tan(-\frac{π}{3})}}$,則θ的弧度數(shù)為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果復(fù)數(shù)$\frac{2+ai}{1+i}(a∈R)$為純虛數(shù),則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且,acosC=(2b-c)cosA
(1)求cosA的值;
(2)若a=6,b+c=8,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$f(x)=\left\{\begin{array}{l}{2^{x-2}},x≤2\\{log_2}^{(x-1)},x>2\end{array}\right.$,則f[f(5)]=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若點(diǎn)(-$\frac{π}{6}$,1)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心,
(1)試求ω的值;
(2)先列表,再作出函數(shù)f(x)在區(qū)間x∈[-π,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,給出的是計(jì)算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2016}$的值的程序框圖,其中判斷框內(nèi)可填入的是( 。
A.i≤2 021?B.i≤2 019?C.i≤2 017?D.i≤2 015?

查看答案和解析>>

同步練習(xí)冊(cè)答案