8.大家知道,莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如表:
閱讀過(guò)莫言的
作品數(shù)(篇)
0~2526~5051~7576~100101~130
男生36111812
女生48131510
(1)試估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率;
(2)對(duì)莫言作品閱讀超過(guò)75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.25的前提下,認(rèn)為對(duì)莫言作品非常了解與性別有關(guān)?
非常了解一般了解合計(jì)
男生
女生
合計(jì)
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0246.635

分析 (1)求出閱讀莫言作品在50篇以上的頻率,估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率;
(2)利用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行判斷.

解答 解:(1)由抽樣調(diào)查閱讀莫言作品在50篇以上的頻率為$\frac{11+18+12+13+15+10}{50+50}=\frac{79}{100}$,據(jù)此估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率約為P=$\frac{79}{100}$
(2)

非常了解一般了解合計(jì)
男生302050
女生252550
合計(jì)5545100
根據(jù)列聯(lián)表數(shù)據(jù)得${K^2}=\frac{{100×{{({30×25-20×25})}^2}}}{50×50×55×45}≈1.010<1.323$
所以沒(méi)有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān).

點(diǎn)評(píng) 本題主要考查獨(dú)立性檢驗(yàn)的應(yīng)用,利用列聯(lián)表計(jì)算出K2,是解決本題的關(guān)鍵.這類題目主要是通過(guò)計(jì)算數(shù)據(jù)來(lái)進(jìn)行判斷的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)=x4-lnx+ax3在[3,5]上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.正態(tài)總體N(1,9)在區(qū)間(2,3)和(-1,0)上取值的概率分別為m,n,則m=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2cos x,sin x),$\overrightarrow$=(cos x,-2cos x).設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的解析式
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓C:(x+2)2+y2=4,相互垂直的兩條直線l1,l2都過(guò)點(diǎn)A(a,0),
(1)當(dāng)a=2時(shí),若圓心為M(1,m)(m>0)的圓和圓C外切且與直線l1,l2都相切,求圓M的方程;
(2)當(dāng)a=-1時(shí),記l1,l2被圓C所截得的弦長(zhǎng)分別為d1,d2,求:
①d12+d22的值;
②d1+d2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若不等式$\frac{kx+2k}{{k}^{2}}$>1+$\frac{x-3}{{k}^{2}}$的解為x>3,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為了做好“雙11”促銷活動(dòng),某電商打算將進(jìn)行促銷活動(dòng)的禮品重新包裝,設(shè)計(jì)方案如下:將一塊邊長(zhǎng)為20cm的正方形紙片ABCD剪去四個(gè)全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再將剩下的陰影部分折成一個(gè)四棱錐形狀的禮品袋S-EFGH,其中A,B,C,D重合于點(diǎn)O,E與E′重合,F(xiàn)與F′重合,G與G′重合,H與H′重合(如圖所示),設(shè)AE=BE′=x(cm).
(1)求證:平面SEG⊥平面SFH;
(2)若電商要求禮品袋的側(cè)面積不少于128cm2,試求x的取值范圍;
(3)當(dāng)x=5時(shí),該電商打算將禮品袋S-EFGH全部放入一個(gè)球形狀的包裝盒內(nèi)密封,求包裝盒的內(nèi)徑R的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin2x.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知全集U={1,2,3,5},M={1,3,5},N={2,3},則集合(∁UN)∩M等于( 。
A.{2}B.{1,3}C.{1,5}D.{2,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案