14.雙曲線$\frac{x^2}{3}-\frac{y^2}{6}=1$的離心率e=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.3D.$\sqrt{6}$

分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得a、b的值,計算可得c的值,由雙曲線的離心率公式計算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為:$\frac{x^2}{3}-\frac{y^2}{6}=1$,
則a=$\sqrt{3}$,b=$\sqrt{6}$,
即c2=3+6=9,即c=3,
則其離心率e=$\frac{c}{a}$=$\sqrt{3}$;
故選:A.

點評 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是利用標(biāo)準(zhǔn)方程求出a、b的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點A(2,1)和B(-1,3),若直線3x-2y-a=0與線段AB相交,則a的取值范圍是( 。
A.-4≤a≤9B.a≤-4或a≥9C.-9≤a≤4D.a≤-9或a≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若橢圓$\frac{y^2}{16}+\frac{x^2}{9}=1和雙曲線\frac{y^2}{4}-\frac{x^2}{5}=1$的共同焦點為F1、F2,P是兩曲線的一個交點,則|PF1|•|PF2|的值為( 。
A.12B.14C.3D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=bx+a;
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{6}}}{6}$,焦距為2,O是坐標(biāo)原點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線y=x+m交橢圓C于A、B兩點,若以AB為直徑的圓經(jīng)過O點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}的前n項和為Sn
(1)當(dāng){an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時,求an
(2)若{an}是等差數(shù)列,且S1+a2=7,S2+a3=15,證明:對于任意n∈N*,都有:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}<\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點M(x1,y1)在函數(shù)y=-2x+8的圖象上,當(dāng)x1∈[2,5]時,則$\frac{{{y_1}+1}}{{{x_1}+1}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l過點A(3,0),B(0,4),則直線l的方程為4x+3y-12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{9}{4}$,底面是邊長為$\sqrt{3}$的正三角形.若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為( 。
A.120°B.60°C.45°D.30°

查看答案和解析>>

同步練習(xí)冊答案