【題目】已知數(shù)列項(xiàng)和為,且.

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè),求數(shù)列的前項(xiàng)和.

【答案】1)數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列. 2

【解析】試題分析:(1當(dāng)時(shí), ,可得以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列;(2由(1)知, ,可得利用錯(cuò)位相減法可得數(shù)列的前項(xiàng)和.

試題解析:1)當(dāng)時(shí), ,所以,

當(dāng)時(shí), ,

所以,

所以數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列.

2)由(1)知, ,

所以

所以 1

2

1-2)得:

,

所以.

方法點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式與求和公式以及錯(cuò)位相減法求數(shù)列的的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用錯(cuò)位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出的表達(dá)式時(shí)應(yīng)特別注意將兩式錯(cuò)項(xiàng)對(duì)齊以便下一步準(zhǔn)確寫出的表達(dá)式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 為圓的直徑點(diǎn)在圓, ,矩形所在的平面和圓所在的平面互相垂直,.

1)求證:平面平面;

2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的t0.01則輸出的n(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有

)求橢圓的標(biāo)準(zhǔn)方程;

)過(guò)的直線與橢圓交于兩點(diǎn),過(guò)平行的直線與橢圓交于兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分.那么

(1)在圓內(nèi)畫5條線段,它們彼此最多分割成多少條線段?將圓最多分割成多少部分?

(2)猜想:圓內(nèi)兩兩相交的n條線段,彼此最多分割成多少條線段?

(3)猜想:在圓內(nèi)畫n條線段,兩兩相交,將圓最多分割成多少部分?

并用數(shù)學(xué)歸納法證明你所得到的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn) 分別為, 的中點(diǎn),將, ,分別沿, 折起,使, 兩點(diǎn)重合于點(diǎn),連接.

(1)求證: 平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體為一簡(jiǎn)單組合體,在底面,,,,平面,,

(1)求證:平面平面

(2)求該組合體的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案