【題目】某校高三一次月考之后,為了為解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機抽出若干名學(xué)生此次的數(shù)學(xué)成績,按成績分組,制成了下面頻率分布表:
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | 5 | 0.05 | |
第二組 | 35 | 0.35 | |
第三組 | 30 | 0.30 | |
第四組 | 20 | 0.20 | |
第五組 | 10 | 0.10 | |
合計 | 100 | 1.00 |
(1)試估計該校高三學(xué)生本次月考數(shù)學(xué)成績的平均分和中位數(shù);
(2)如果把表中的頻率近似地看作每個學(xué)生在這次考試中取得相應(yīng)成績的概率,那么從所有學(xué)生中采用逐個抽取的方法任意抽取3名學(xué)生的成績,并記成績落在中的學(xué)生數(shù)為,
求:①在三次抽取過程中至少有兩次連續(xù)抽中成績在中的概率;
② 的分布列和數(shù)學(xué)期望.(注:本小題結(jié)果用分數(shù)表示)
【答案】(1)114.5,;(2)見解析
【解析】分析:(1)計算本次月考數(shù)學(xué)學(xué)科的平均分即可;中位數(shù)是落在頻率為0.5的值.
(2)由表知成績落在的概率,
①利用相互獨立事件的概率計算“在三次抽取過程中至少有兩次連續(xù)抽中成績在中”的概率值;
②由題意的可能取值為0,1,2,3;計算對應(yīng)的概率值,寫出 的分布列和數(shù)學(xué)期望.
詳解:(1)本次月考數(shù)學(xué)學(xué)科成績的平均分為
;
設(shè)本次月考數(shù)學(xué)學(xué)科成績的中位數(shù)為x,則
0.05+0.35+0.03(110-x)=0.03(120-x)+0.2+0.1
即x=
(2)由表,知成績落在中的概率為,
①設(shè)表示事件“在三次抽取過程中至少有兩次連續(xù)抽中成績在 中”.
則,
所以在三次抽取過程中至少有兩次連續(xù)抽中成績在中的概率為;
②的可能取值為0,1,2,3
,,
,
的分布列為
0 | 1 | 2 | 3 | |
,或,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F為拋物線的焦點,A、B是拋物線C上的兩個動點,O為坐標原點.
(I)若直線AB經(jīng)過焦點F,且斜率為2,求線段AB的長度|AB|;
(II)當OA⊥OB時,求證:直線AB經(jīng)過定點M(4,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格(元)和時間(天)的關(guān)系如圖所示.
(1)求銷售價格(元)和時間(天)的函數(shù)關(guān)系式;
(2)若日銷售量(件)與時間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場第幾天時,日銷售額(元)最高,且最高為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量(其中),記,且滿足.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程在上有三個不相等的實數(shù)根,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓系方程: (, ), 是橢圓的焦點, 是橢圓上一點,且.
(1)求的方程;
(2)為橢圓上任意一點,過且與橢圓相切的直線與橢圓交于, 兩點,點關(guān)于原點的對稱點為,求證: 的面積為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就稱甲、乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當點A的橫坐標為3時,△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(。┳C明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,是函數(shù)(,)圖象上的任意兩點,且角的終邊經(jīng)過點,若時,的最小值為.
(1)求函數(shù)的解析式;
(2)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com