分析 (1)曲線C的極坐標方程為ρ=4cosθ,得ρ2=4ρcosθ,即可得出曲線C的直角坐標方程;由直線l過點M(1,0),傾斜角為$\frac{π}{6}$,可得參數(shù)方程.
(2)把直線l代入圓的直角坐標方程x2+y2-4x=0,化簡后利用韋達定理可求t1+t2,t1t2的值,由|MA|+|MB|=|t1-t2|即可求值得解.
解答 解:(1)對于C:由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x,可得圓C的圓心為(2,0),半徑為2,
直線l過點M(1,0),傾斜角為$\frac{π}{6}$,參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù));
(2)設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2
將直線l的參數(shù)方程代入圓的直角坐標方程x2+y2-4x=0,
化簡得t2-$\sqrt{3}t$-3=0,
∴t1+t2=$\sqrt{3}$,t1t2=-3,
∴|MA|+|MB|=|t1|+|t2|=|t1-t2|=$\sqrt{3+12}$=$\sqrt{15}$.
點評 本題考查了極坐標方程化為直角坐標方程、直線參數(shù)方程、弦長公式,考查了計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1或3 | C. | 4或6 | D. | 3或4或6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | -2 | D. | $-2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
專業(yè)對口 | 專業(yè)不對口 | 合計 | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計 | 65 | 15 | 80 |
P(K) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
0.455 | 0.708 | 1.323 | 2.072 | 2.306 | 3.841 | 5.021 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{M}$∪$\overline{N}$是必然事件 | B. | M∪N是必然事件 | ||
C. | $\overline{M}$∩$\overline{N}$=∅ | D. | $\overline{M}$與$\overline{N}$一定不為互斥事件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com