6.某校老年、中年和青年教師的人數(shù)分別為900、1800、1600,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有240人,則該樣本的老年教師人數(shù)為135.

分析 由題意,老年和青年教師的人數(shù)比為900:1600=9:16,即可得出結(jié)論.

解答 解:由題意,老年和青年教師的人數(shù)比為900:1600=9:16,
設(shè)老年教師為x人
所以$\frac{x}{240}$=$\frac{9}{16}$,
解得x=135
所以老年教師有135人,
故答案為:135

點評 本題考查分層抽樣,分層抽樣的優(yōu)點是:使樣本具有較強(qiáng)的代表性,并且抽樣過程中可綜合選用各種抽樣方法,因此分層抽樣是一種實用、操作性強(qiáng)、應(yīng)用比較廣泛的抽樣方法,要注意的是,分層抽樣中各層抽取的比例數(shù)相等,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的一個焦點,則該拋物線的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=x2sinx,則$f'(\frac{π}{2})$=( 。
A.$\frac{π^2}{2}$B.$-\frac{π^2}{2}$C.$-\frac{π^2}{4}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若二進(jìn)制數(shù)100y011和八進(jìn)制數(shù)x03相等,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象,如圖所示.
(1)求函數(shù)解析式,并求出函數(shù)的單調(diào)增區(qū)間;
(2)若方程f(x)=m在[-$\frac{π}{6}$,$\frac{13π}{12}$]有兩個不同的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知雙曲線C過點A(-$\sqrt{15}$,1),且與x2-3y2=1有相同的漸近線.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)過雙曲線C的一個焦點作傾斜角為45°的直線l與雙曲線交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知偶函數(shù)f(x)的定義域為集合M={x|ln|x|≤5},f(5)=50,當(dāng)x>0且x∈M時,xf′(x)<2f(x)恒成立,則不等式$\frac{f(x)}{{x}^{2}}$≤2的解集為( 。
A.[-e5,-5]∪[5,e5]B.[-5,0)∪(0,5]C.[-e2,-2]∪[2,e2]D.[-2,0]∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sinx•cosx-2sin2x+1(x∈R)
(1)設(shè)函數(shù)g(x)=f(x+$\frac{φ}{2}$),φ∈(0,π),若g(x)為偶函數(shù),求g(x)最大值及相應(yīng)的x值的集合.
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個單位,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=h(x)的圖象,若關(guān)于x的方程h(x)+k=0,在區(qū)間[0,π]上有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點(0,-2)與拋物線y2=8x只有一個公共點的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

同步練習(xí)冊答案