15.已知函數(shù)f(x)=2$\sqrt{3}$sinx•cosx-2sin2x+1(x∈R)
(1)設(shè)函數(shù)g(x)=f(x+$\frac{φ}{2}$),φ∈(0,π),若g(x)為偶函數(shù),求g(x)最大值及相應(yīng)的x值的集合.
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=h(x)的圖象,若關(guān)于x的方程h(x)+k=0,在區(qū)間[0,π]上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

分析 (1)利用三角函數(shù)恒等變換的應(yīng)用可求f(x),g(x)解析式,由偶函數(shù)的性質(zhì)可求φ,利用余弦函數(shù)的單調(diào)性即可得解.
(2)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得函數(shù)解析式h(x),由題意可得函數(shù)h(x)與y=-k在區(qū)間[0,π]上有交點(diǎn),結(jié)合正弦函數(shù)的圖象可得k的范圍.

解答 解:(1)∵f(x)=2$\sqrt{3}$sinx•cosx-2sin2x+1
=$\sqrt{3}$sin2x-(1-cos2x)+1
=2sin(2x+$\frac{π}{6}$),
又∵g(x)=f(x+$\frac{φ}{2}$)=2sin[2(x+$\frac{φ}{2}$)+$\frac{π}{6}$]=2sin(2x+φ+$\frac{π}{6}$)為偶函數(shù),
∴圖象關(guān)于y軸為對(duì)稱軸,φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
∵φ∈(0,π),
∴φ=$\frac{π}{3}$.…(9分)
則g(x)=2sin(2x+$\frac{π}{2}$)=2cos2x.…(10分)
當(dāng)cos2x=-1時(shí),函數(shù)g(x)取得最大值2,此時(shí)x∈{x|x=kπ+$\frac{π}{2}$,k∈Z}.…(12分)
(2)將f(x)的圖象向右平移個(gè)$\frac{π}{4}$個(gè)單位后,得到y(tǒng)=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{6}$]=2sin(2x-$\frac{π}{3}$)的圖象,
再將所得圖象所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到y(tǒng)=2sin(x-$\frac{π}{3}$)的圖象.
所以:h(x)=2sin(x-$\frac{π}{3}$).
因?yàn)椋?≤x≤π,
所以:-$\frac{π}{3}$≤x-$\frac{π}{3}$≤$\frac{2π}{3}$,h(x)=2sin(x-$\frac{π}{3}$)∈[-$\sqrt{3}$,2],
因?yàn)椋宏P(guān)于x的方程h(x)+k=0,在區(qū)間[0,π]上有實(shí)數(shù)解,
所以:-$\sqrt{3}$≤-k≤2,解得實(shí)數(shù)k的取值范圍為:-2≤k$≤\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象,三角函數(shù)恒等變換的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上增函數(shù),則稱f(x)為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為A,所有“二階比增函數(shù)”組成的集合記為B.
(1)設(shè)函數(shù)f(x)=ax3-2(a-2)x2+(a-1)x(x>0,a∈R)
①求證:當(dāng)a=0時(shí),f(x)∈A∩B;
②若f(x)∈A,且f(x)∉B,求實(shí)數(shù)a的取值范圍.
(2)對(duì)定義在(0,+∞)上的函數(shù)f(x),若f(x)∈B,且存在常數(shù)k使得?x∈(0,+∞),f(x)<k,求證:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某校老年、中年和青年教師的人數(shù)分別為900、1800、1600,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有240人,則該樣本的老年教師人數(shù)為135.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,直線e、f為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)兩條漸近線,F(xiàn)為右焦點(diǎn),過點(diǎn)F作FM∥f,交e于M,交雙曲線于R,且$\frac{FR}{FM}$∈[$\frac{1}{2}$,$\frac{2}{3}$],則雙曲線的離心率的取值范圍是[$\sqrt{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果袋中裝有數(shù)量差別很大而大小相同的白球和黃球(只是顏色不同)若干個(gè),從中任取一球,取了10次有7個(gè)白球,估計(jì)袋中數(shù)量最多的是白球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.利用五點(diǎn)法作出f(x)=1+2sinx圖象,x∈[0,2π],并指出f(x)與直線y=1的交點(diǎn)個(gè)數(shù)有幾個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)M={1,2},N={a,b},a,b∈R,若M=N,則2a+b=4或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A,B為銳角三角形的兩個(gè)內(nèi)角,對(duì)于函數(shù):f(x)=($\frac{sinA}{cosB}$)|x|+($\frac{sinB}{cosA}$)|x|,下列說法正確的是( 。
A.f(x)在(-∞,0]上單調(diào)遞減,在(0,+∞)上單調(diào)遞增
B.f(x)在(-∞,0]上單調(diào)遞增,在(0,+∞)上單調(diào)遞減
C.f(x)在定義域上單調(diào)遞增
D.f(x)在定義域上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=x3-3x2+3的圖象與函數(shù)y=$\frac{x-2}{x-1}$的圖象的所有交點(diǎn)的縱坐標(biāo)之和為( 。
A.-2B.0C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案