設(shè)等比數(shù)列都在函數(shù)的圖象上。
(1)求r的值;
(2)當(dāng);
(3)若對(duì)一切的正整數(shù)n,總有的取值范圍。

(1)(2)(3)

解析試題分析:(1)由已知可得,
當(dāng)時(shí),
是等比數(shù)列,              4分
(2)由(1)可知,




          8分
(3)

遞增,當(dāng)時(shí),取最小值為
所以一切的      12分
考點(diǎn):數(shù)列求通項(xiàng)求和
點(diǎn)評(píng):數(shù)列求和采用的錯(cuò)位相減法,此法適用于通項(xiàng)公式為關(guān)于n的一次式與指數(shù)式的乘積形式的數(shù)列,第三問(wèn)不等式恒成立轉(zhuǎn)化為求數(shù)列前n項(xiàng)和的最值,期間借助了數(shù)列的單調(diào)性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且滿足
(1)求,的值;
(2)求;
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)已知數(shù)列的通項(xiàng)公式,記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;      (2)求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

知數(shù)列的首項(xiàng)項(xiàng)和為,且
(1)證明:數(shù)列是等比數(shù)列;
(2)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù),并比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為已知
(Ⅰ)設(shè)證明:數(shù)列是等比數(shù)列;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,則(1)當(dāng)時(shí),求數(shù)列的前項(xiàng)和;(2)當(dāng)時(shí),證明數(shù)列是等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,,.
(1)設(shè),求證數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
在數(shù)列中,為其前項(xiàng)和,滿足
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列為公比不為1的等比數(shù)列,求

查看答案和解析>>

同步練習(xí)冊(cè)答案