已知數(shù)列的前項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;      (2)求的最小值。

(1) 
(2)-7

解析試題分析:(1) -5
時(shí)  =
= 2n-6
       
(2)根據(jù)題意,由于數(shù)列的前3項(xiàng)為非負(fù)數(shù),則可知從第4項(xiàng)開(kāi)始為正數(shù),引起可知數(shù)列有最小值,當(dāng)n=3,n=2時(shí)數(shù)列的前n項(xiàng)和達(dá)到最小,且為(-5)+(-2)+0=-7,因此答案為-7.
考點(diǎn):等差數(shù)列
點(diǎn)評(píng):主要是考查了等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和的關(guān)系式的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上.
(1)求;
(2)求數(shù)列的通項(xiàng)公式;
(3)若,求證數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正項(xiàng)數(shù)列的前項(xiàng)和為的等比中項(xiàng).
(Ⅰ)若,且,求數(shù)列的通項(xiàng)公式;
(Ⅱ)在(Ⅰ)的條件下,若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,點(diǎn)在函數(shù)的圖象上,其中
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

表示等差數(shù)列的前項(xiàng)的和,且 
(1)求數(shù)列的通項(xiàng)
(2)求和…… 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且滿(mǎn)足.
(1)求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列的每?jī)身?xiàng)之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項(xiàng)之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等比數(shù)列都在函數(shù)的圖象上。
(1)求r的值;
(2)當(dāng);
(3)若對(duì)一切的正整數(shù)n,總有的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的首項(xiàng)項(xiàng)和為,且,
(1)試判斷數(shù)列是否成等比數(shù)列?并求出數(shù)列的通項(xiàng)公式;
(2)記為數(shù)列項(xiàng)和,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿(mǎn)足
(I)求的通項(xiàng)公式;
(II)在中是否存在使得中的項(xiàng),若存在,請(qǐng)寫(xiě)出滿(mǎn)足題意的一項(xiàng)(不要求寫(xiě)出所有的項(xiàng));若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案