7.用數(shù)學(xué)歸納法證明:12+22+32+…+(n-1)2+n2+(n-1)2+…+32+22+12=$\frac{1}{3}$n(2n2+1)

分析 用數(shù)學(xué)歸納法證明:(1)當(dāng)n=1時(shí),去證明等式成立;(2)假設(shè)當(dāng)n=k時(shí),等時(shí)成立,用上歸納假設(shè)后,去證明當(dāng)n=k+1時(shí),等式也成立即可.

解答 證明:利用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),左邊=1=右邊,此時(shí)等式成立;
(2)假設(shè)當(dāng)n=k∈N*時(shí),12+22+32+…+(k-1)2+k2+(k-1)2+…+32+22+12
=$\frac{1}{3}$k(2k2+1)(k∈N*)成立.
則當(dāng)n=k+1時(shí),左邊=12+22+32+…+k2+(k+1)2+k2+…+22+12
=$\frac{1}{3}$k(2k2+1)+(k+1)2+k2=$\frac{1}{3}$(k+1)[2(k+1)2+1]=右邊,
∴當(dāng)n=k+1時(shí),等式成立.
根據(jù)(1)和(2),可知對n∈N*等式成立.

點(diǎn)評 本題考查了數(shù)學(xué)歸納法證明等式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x,y的取值如表所示,若y與x線性相關(guān),且$\widehaty$=0.5x+a,則a=( 。
x0134
y3.25.35.87.7
A.3.5B.2.2C.4.5D.3.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=-$\frac{6}{\sqrt{1+8si{n}^{2}θ}}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}α}\\{y=-3-α}\end{array}\right.$(α為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若點(diǎn)(1,a)到直線y=x+1的距離是$\frac{{3\sqrt{2}}}{2}$,則實(shí)數(shù)a為( 。
A.-1B.5C.-1或5D.-3或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,0]上是減函數(shù),則不等式f(lnx)<-f(1)的解集為( 。
A.(e,+∞)B.(${\frac{1}{e}$,+∞)C.(${\frac{1}{e}$,e)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l1:2x+3y-5=0,l2:3x-2y-3=0.
(1)求兩直線的交點(diǎn)P的坐標(biāo);
(2)求過點(diǎn)P且平行于直線2x+y-3=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.調(diào)查200名50歲以上有吸煙習(xí)慣與患慢性氣管炎的人的情況,獲數(shù)據(jù)如表
患慢性氣管炎未患慢性氣管炎總計(jì)
吸煙s30100
不吸煙35t100
合計(jì)10595200
(1)表中s,t的值分別是多少;
(2)試問:有吸煙習(xí)慣與患慢性氣管炎病是否有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若(1-mx)5=a0+a1x+a2x2+…+a5x5,且a5=-32,則a1+a2+a3+a4的值為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的中心在原點(diǎn),離心率為$\frac{{\sqrt{3}}}{2}$,且與拋物線${y^2}=4\sqrt{3}x$有共同的焦點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓C的左、右頂點(diǎn)分別為A1、A2,P為橢圓C上異于A1、A2的動(dòng)點(diǎn),直線A1P、A2P分別交直線l:x=4于M、N兩點(diǎn),設(shè)d為M、N兩點(diǎn)之間的距離,求d的最小值.

查看答案和解析>>

同步練習(xí)冊答案