1.函數(shù)f(x)=|x2-a|在區(qū)間[-1,1]上的最大值是a,那么實(shí)數(shù)a的取值范圍是( 。
A.[0,+∞)B.[$\frac{1}{2}$,1]C.[$\frac{1}{2}$,+∞)D.[1,+∞)

分析 對(duì)a討論,分a≤0,a>0,可得a>0成立,由|x2-a|=a,可得x=0或±$\sqrt{2a}$,由$\sqrt{2a}$≥1,即可得到所求范圍.

解答 解:若a≤0,則f(x)=x2-a,
f(x)在[-1,1]的最大值為1-a,
即有1-a=a,可得a=$\frac{1}{2}$,不成立;
則a>0,由|x2-a|=a,可得x=0或±$\sqrt{2a}$,
由圖象結(jié)合在區(qū)間[-1,1]上的最大值是a,
可得$\sqrt{2a}$≥1,解得a≥$\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的最值的判斷,考查分類討論思想方法,數(shù)形結(jié)合思想,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對(duì)于函數(shù)y=2sin(3x+$\frac{π}{4}$),求出其定義域,值域,最小正周期,以及單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.從某校的高一學(xué)生中采用系統(tǒng)抽樣法選出30人測(cè)量其身高,數(shù)據(jù)的莖葉圖如圖(單位:cm):若高一年級(jí)共有600人,據(jù)上圖估算身高在1.70m以上的大約有300人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:方程ax2+ax-2=0在[-1,1]上有解,命題q:只有一個(gè)實(shí)數(shù)x滿足:x2+2ax+2a≤0.
(Ⅰ)若f(x)=ax2+ax-2,則f(x)的圖象必定過兩定點(diǎn),試寫出這兩定點(diǎn)的坐標(biāo)(-1,-2),(0,-2)(只需填寫出兩點(diǎn)坐標(biāo)即可);
(Ⅱ)若命題“p或q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知銳角三角形三邊長(zhǎng)分別為1,3,a,則a的取值范圍是( 。
A.8<a<10B.2$\sqrt{2}<a<\sqrt{10}$C.$2\sqrt{2}<a<10$D.$\sqrt{10}<a<8$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.現(xiàn)安排甲、乙、丙、丁4名同學(xué)參加上海世博會(huì)志愿者服務(wù)活動(dòng),每人從事翻譯、導(dǎo)游、禮儀、司機(jī)四項(xiàng)工作之一,每項(xiàng)工作都有一人參加.甲、乙不會(huì)開車但能從事其他三項(xiàng)工作,丙、丁都能勝任四項(xiàng)工作,則不同安排方案的種數(shù)為12 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.直線l0:y=x+1繞點(diǎn)P(3,1)逆時(shí)針旋轉(zhuǎn)90°得到直線l,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.從4名男生和3名女生中任選2人參加演講比賽,
(1)求所選2人都是男生的概率;
(2)求所選2人恰有1名女生的概率;
(3)求所選2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a=log20.5,b=20.5,c=0.52,則a,b,c三個(gè)數(shù)的大小關(guān)系是( 。
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

同步練習(xí)冊(cè)答案