9.下列各組函數(shù)表示相等函數(shù)的是( 。
A.y=$\frac{{x}^{2}-4}{x-2}$與y=x+2B.y=$\sqrt{{x}^{2}-3}$與y=x-3
C.y=2x-1(x≥0)與s=2t-1(t≥0)D.y=x0與y=1

分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,判斷它們是同一函數(shù).

解答 解:對(duì)于A,函數(shù)y=$\frac{{x}^{2}-4}{x-2}$=x+2(x≠2),與y=x+2(x∈R)的定義域不同,所以不是同一函數(shù);
對(duì)于B,函數(shù)y=$\sqrt{{x}^{2}-3}$(x≤-3x≥3),與y=x-3(x∈R)的定義域不同,對(duì)應(yīng)關(guān)系也不同,所以不是同一函數(shù);
對(duì)于C,函數(shù)y=2x-1(x∈R),與y=2t-1(t∈R)的定義域相同,對(duì)應(yīng)關(guān)系也相同,所以是同一函數(shù);
對(duì)于D,函數(shù)y=x0=1(x≠0),與y=1(x∈R)的定義域不同,所以不是同一函數(shù).
故選:C.

點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.化簡(jiǎn):($\frac{x-y}{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}$+$\frac{x-y}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|-2<x<1},集合B={x|-1<x<4}.
(1)求A∩B,A∪B;
(2)求(CRA)∪B,A∩(CRB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.為了得到$f(x)=2sin({3x-\frac{π}{3}})$的圖象,只需將g(x)=2sinx的圖象( 。
A.縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,再將所得圖象向右平移$\frac{π}{9}$個(gè)單位
B.縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,再將所得圖象向右平移$\frac{π}{3}$個(gè)單位
C.縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的$\frac{1}{3}$,再將所得圖象向右平移$\frac{π}{3}$個(gè)單位
D.縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的$\frac{1}{3}$,再將所得圖象向右平移$\frac{π}{9}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=sinxcosx+sinx在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),函數(shù)的最小值是-$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.表面積為60π的球面上有四點(diǎn)S,A,B,C,且△ABC是等邊三角形,球心O到平面ABC的距離為2,若平面SAB⊥平面ABC,則棱錐S-ABC體積的最大值為$\frac{121\sqrt{3}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.方程2a=|ax-1|(a>0且a≠1)有兩個(gè)不同的解,則a的取值范圍為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一動(dòng)圓P過(guò)定點(diǎn)M(-4,0),且與已知圓N:(x-4)2+y2=16相切,則動(dòng)圓圓心P的軌跡方程是( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≥2)$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≤2)$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{y^2}{4}-\frac{x^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$B+C=\frac{2π}{3}$,$a=\sqrt{2}$,則b2+c2的取值范圍是( 。
A.(3,6)B.(3,6]C.(2,4)D.(2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案