A. | ($\frac{π}{6}$,$\frac{2π}{3}$) | B. | ($\frac{π}{3}$,$\frac{5π}{6}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{2π}{3}$,π) |
分析 由極值點可得φ=-$\frac{π}{6}$,解2kπ+$\frac{π}{2}$<2x-$\frac{π}{6}$<2kπ+$\frac{3π}{2}$可得函數(shù)f(x)的單調(diào)遞減區(qū)間,結(jié)合選項可得.
解答 解:∵x0=$\frac{π}{3}$是函數(shù)f(x)=sin(2x+φ)的一個極大值點,
∴sin(2×$\frac{π}{3}$+φ)=1,∴2×$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,解得φ=2kπ-$\frac{π}{6}$,k∈Z,
不妨取φ=-$\frac{π}{6}$,此時f(x)=sin(2x-$\frac{π}{6}$)
令2kπ+$\frac{π}{2}$<2x-$\frac{π}{6}$<2kπ+$\frac{3π}{2}$可得kπ+$\frac{π}{3}$<x<kπ+$\frac{5π}{6}$,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為(kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$)k∈Z,
結(jié)合選項可知當(dāng)k=0時,函數(shù)的一個單調(diào)遞減區(qū)間為($\frac{π}{3}$,$\frac{5π}{6}$),
故選:B.
點評 本題考查正弦函數(shù)的圖象和單調(diào)性,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$或2 | D. | -2或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{12}$個單位長度 | B. | 向左平移$\frac{7π}{12}$個單位長度 | ||
C. | 向右平移$\frac{π}{12}$個單位長度 | D. | 向右平移$\frac{7π}{12}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com