15.已知f(x)=$\left\{{\begin{array}{l}{\frac{1}{{f({x+1})}}-1,-1<x<0}\\{x,0≤x<1}\end{array}}$,若方程f(x)-4ax=a(a≠0)有唯一解,則實(shí)數(shù)a的取值范圍是(  )
A.$[{\frac{1}{3},+∞})$B.$[{\frac{1}{5},+∞})$C.$\left\{1\right\}∪[{\frac{1}{3},+∞})$D.$\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$

分析 求出f(x)的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象求出a的范圍即可,

解答 解:令-1<x<0,則0<x+1<1,
則f(x+1)=x+1,
故f(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-1,-1<x<0}\\{x,0≤x<1}\end{array}\right.$,
如圖示:

由f(x)-4ax=a(a≠0),
得:f(x)=a(4x+1),
函數(shù)y=a(4x+1)恒過(-$\frac{1}{4}$,0),
故KAB=$\frac{1}{\frac{5}{4}}$=$\frac{4}{5}$,
若方程f(x)-4ax=a(a≠0)有唯一解,
則4a≥$\frac{4}{5}$,解得:a≥$\frac{1}{5}$,
當(dāng)4ax+a=$\frac{1}{x+1}$-1即圖象相切時(shí),
根據(jù)△=0,解得:a=-1,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=$\frac{e^x}{{1+a{x^2}}}$,其中a為正實(shí)數(shù).
(1)求證:直線y=x+1恒為曲線f(x)=$\frac{e^x}{{1+a{x^2}}}$的切線;
(2)當(dāng)a=$\frac{4}{3}$時(shí),求f(x)的極值點(diǎn);
(3)若f(x)為R上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.觀察下列等式
$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i=cos$\frac{π}{3}$+isin$\frac{π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3=cosπ+isinπ,
($\frac{1}{2}$+$\frac{\sqrt{4}}{2}$i)4=cos$\frac{4π}{3}$+isin $\frac{4π}{3}$,

照此規(guī)律,可以推測(cè)對(duì)于任意的n∈N*,($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n=cos$\frac{n}{3}$π+isin$\frac{n}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=m+logax(a>0且a≠1)的圖象過點(diǎn)(16,3)和(1,-1).
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=2f(x)-f(x-1),求 g(x)的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x3+x在點(diǎn)A(1,2)的切線方程為( 。
A.4x-y+2=0B.4x-y-2=0C.4x+y+2=0D.4x+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=2sin($\frac{π}{6}$-2x)為增函數(shù)的區(qū)間是[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將十位制389化成四進(jìn)位制數(shù)是12011(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四個(gè)結(jié)論:
①若命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實(shí)數(shù)根,則m≤0”;
④函數(shù)f(x)=cos(2x-$\frac{π}{6}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱.
其中正確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|.
(1)若f(x)>m(m>0)的解集為x∈(-∞,1)∪(7,+∞),求實(shí)數(shù)a,m的值;
(2)當(dāng)a=-1時(shí),當(dāng)x≤-2時(shí),不等式f(x)+t≥f(x+2)恒成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案