17.設(shè)集合A={1,2,3},B={1,3,9},其中x∈A且x∉B,則x=2.

分析 根據(jù)元素與集合的關(guān)系進行判斷

解答 解:集合A={1,2,3},B={1,3,9},
∵x∈A,
∴x=1或2或3,
x∉B,
∴x≠1或3或9,
故得x=2.
故答案為:2

點評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.把八進制數(shù)67(8)轉(zhuǎn)化為三進制數(shù)為2001(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)h(x),g(x)在[a,b]上可導(dǎo),且h′(x)<g′(x),則當(dāng)a<x<b時,有(  )
A.h(x)<g(x)B.h(x)>g(x)C.h(x)+g(a)>g(x)+h(a)D.h(x)+g(b)>g(x)+h(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中,真命題是( 。
A.?x∈R,x2≥x
B.命題“若x=1,則x2=1”的逆命題
C.0,β0∈R,使得sin(α00)=sinα0+sinβ0
D.命題“若x≠y,則sinx≠siny”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(lnx)ln(1-x).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:①lnx>$\frac{x-1}{{\sqrt{x}}}$;
②曲線y=f(x)上的所有點都落在圓$C:{(x-\frac{1}{2})^2}+{y^2}=\frac{1}{4}$內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,AB為圓O的直徑,點C在圓周上(異于點A,B),直線PA垂直于圓O所在的平面,點M是線段PB的中點.有以下四個命題:
①MO∥平面PAC;
②PA∥平面MOB;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正確的命題的序號是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.6人排成一排,其中甲、乙、丙3人必須分開站的排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若數(shù)列{an}滿足$({2n+3}){a_{n+1}}-({2n+5}){a_n}=({2n+3})({2n+5})lg({1+\frac{1}{n}})$,且a1=5,則數(shù)列$\left\{{\frac{a_n}{2n+3}}\right\}$的第100項為(  )
A.2B.3C.1+lg99D.2+lg99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義$|\begin{array}{l}{a}&\\{c}&wqui8oa\end{array}|$=ad-bc,則$|{\begin{array}{l}{sin{{50}°}}&{cos{{40}°}}\\{-\sqrt{3}tan{{10}°}}&1\end{array}}|$=( 。
A.2sin10°B.-1C.$\sqrt{3}$D.0

查看答案和解析>>

同步練習(xí)冊答案