【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面,分別是的中點.
(I)求證:∥平面;
(II)求證:;
(III)求BA1與平面所成角的大小.
【答案】(1)見解析.
(2)見解析.
(3).
【解析】分析:(Ⅰ)取的中點,連接,.可證明四邊形為平行四邊形,
所以∥,由線面平行的判定定理可得結果;(II)取的中點,連結,,由面面垂直的性質(zhì)可得平面, 所以,由菱形的性質(zhì)結合∥, 可得,從而得平面,進而可得結果;(III)連結A1O,由(Ⅱ)知平面所以為BA1與平面所成的角 ,在直角三角形中,,從而可得結果.
詳解:
證明:(Ⅰ)取的中點,連接,.
因為,分別是,的中點,
所以∥,
又因為∥
所以∥且
所以四邊形為平行四邊形,
所以∥.
又因為平面,平面,
所以∥平面.
(Ⅱ)取的中點,連結,.
由題意知 ,
又因為平面平面,
所以平面.
因為平面 所以
因為四邊形為菱形,所以
又因為∥, 所以
所以平面,又平面
所以.
(III)連結A1O,由(Ⅱ)知平面
所以為BA1與平面所成的角
在直角三角形中,
所以,即BA1與平面所成的角為
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.
(1)求橢圓的方程;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某水仙花經(jīng)營部每天的房租、水電、人工等固定成本為1000元,每盆水仙花的進價是10元,銷售單價(元) ()與日均銷售量(盆)的關系如下表,并保證經(jīng)營部每天盈利.
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
(Ⅰ) 在所給的坐標圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對的對應點,并確定與的函數(shù)關系式;
(Ⅱ)求出的值,并解釋其實際意義;
(Ⅲ)請寫出該經(jīng)營部的日銷售利潤的表達式,并回答該經(jīng)營部怎樣定價才能獲最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高級中學今年高一年級招收“國際班”學生人,學校為這些學生開辟了直升海外一流大學的綠色通道,為了逐步提高這些學生與國際教育接軌的能力,將這人分為三個批次參加國際教育研修培訓,在這三個批次的學生中男、女學生人數(shù)如下表:
第一批次 | 第二批次 | 第三批次 | |
女 | |||
男 |
已知在這名學生中隨機抽取名,抽到第一批次、第二批次中女學生的概率分別是.
(1)求的值;
(2)為了檢驗研修的效果,現(xiàn)從三個批次中按分層抽樣的方法抽取名同學問卷調(diào)查,則三個批次被選取的人數(shù)分別是多少?
(3)若從第(2)小問選取的學生中隨機選出兩名學生進行訪談,求“參加訪談的兩名同學至少有一個人來自第一批次”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:,,且(n=1,2,...).記
集合.
(1)(Ⅰ)若,寫出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , , .
(1)若 ,且 ,求 的值;
(2)將函數(shù) 的圖像向右平移 個單位長度得到函數(shù) 的圖像,若函數(shù) 在 上有零點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖的程序框圖表示的算法中,輸入三個實數(shù)a,b,c,要求輸出的x是這三個數(shù)中最大的數(shù),那么在空白的判斷框中,應該填入( )
A.x>c
B.c>x
C.c>b
D.c>a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結論中不正確的是( )
A.y與x具有正的線性相關關系
B.回歸直線過樣本點的中心( , )
C.若該大學某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com