1.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(3,m).若($\overrightarrow a$+$\overrightarrow{2b$)∥(3$\overrightarrow b$-$\overrightarrow a$),則實(shí)數(shù)m的值是6.

分析 根據(jù)平面向量的坐標(biāo)表示與運(yùn)算法則,利用共線定理列出方程求解即可.

解答 解:∵向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(3,m),
∴$\overrightarrow a$+$\overrightarrow{2b$=(7,2+2m),
3$\overrightarrow b$-$\overrightarrow a$=(8,3m-2),
∵($\overrightarrow a$+$\overrightarrow{2b$)∥(3$\overrightarrow b$-$\overrightarrow a$),
∴7(3m-2)-8(2+2m)=0,
解得m=6.
故答案為:6.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與運(yùn)算法則以及共線定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(tanα)=sin2α+cos2α,則函數(shù)f(x)的值域?yàn)閇-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,RT△ABC中,AB=AC,BC=4,O為BC的中點(diǎn),以O(shè)為圓心,1為半徑的半圓與BC交于點(diǎn)D,P為半圓上任意一點(diǎn),則$\overrightarrow{BP}$•$\overrightarrow{AD}$的最小值為(  )
A.2+$\sqrt{5}$B.$\sqrt{5}$C.2D.2-$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某校為了調(diào)查高三年級(jí)參加某項(xiàng)戶外活動(dòng)的文科生和理科生的參與情況,用簡(jiǎn)單隨機(jī)抽樣,從報(bào)名參加活動(dòng)的所有學(xué)生中抽取60名學(xué)生,已知每位學(xué)生被抽取的概率為0.05.若按文科生和理科生兩部分采取分層抽樣,共抽取30名學(xué)生,其中24名是理科生,則報(bào)名參加活動(dòng)的文科生共有240人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列三個(gè)命題:
①“若x2+2x-3≠0,則x≠1”為假命題;
②若p∧q為假命題,則p,q均為假命題;
③命題p:?x∈R,2x>0,則?p:?x0∈R,2x0≤0.
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.集合U={1,2,3,4,5,6},A={2,3},B={x∈Z|x2-6x+5<0},∁U(A∩B)=( 。
A.{1,5,6}B.{1,4,5,6}C.{2,3,4}D.{1,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC中,A=30°,AB=2$\sqrt{3}$,2≤BC≤2$\sqrt{3}$,則△ABC面積的范圍是$(0,\sqrt{3}]∪[2\sqrt{3},3\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥x}\\{y≤1-x}\\{3x≥y}{\;}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+4y的最大值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)m=$\frac{1}{4}$時(shí),二次方程x2+2mx+m-4=0的兩根平方和取得最。ㄌ睢按蟆被颉靶 保┲$\frac{31}{4}$(填數(shù)字)

查看答案和解析>>

同步練習(xí)冊(cè)答案