12.如圖,在以O(shè)為頂點(diǎn)的三棱錐中,過O的三條棱兩兩相交都是30°,在一條棱上取A、B兩點(diǎn),OA=4cm,OB=3cm,以A、B為端點(diǎn)用一條繩子緊繞三棱錐的側(cè)面一周(繩和側(cè)面無摩擦),求此繩在A、B兩點(diǎn)間的最短繩長.

分析 作出三棱錐的側(cè)面展開圖,如圖A、B兩點(diǎn)間最短繩長就是線段AB的長度.

解答 解:作出三棱錐的側(cè)面展開圖,如圖A、B兩點(diǎn)間最短繩長就是線段AB的長度.
在△AOB中,∠AOB=30°×3=90°,
OA=4 cm,OB=3 cm,
所以AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=5 cm.
所以此繩在A、B兩點(diǎn)間的最短繩長為5 cm..

點(diǎn)評 本題考查空間距離的計算,考查勾股定理的運(yùn)用,正確運(yùn)用側(cè)面展開圖是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知四邊形ABCD為矩形,PA⊥平面ABCD,設(shè)PA=AB=a,BC=2a,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示,在直三棱柱ABC-A1B1C1中,BC=AC,AB=$\sqrt{2}$AA1,AC1⊥A1B,M,N分別是A1B1,AB的中點(diǎn),給出下列結(jié)論:
①C1M⊥平面A1ABB,
②A1B⊥NB1
③平面AMC1⊥平面CBA1
其中正確結(jié)論的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點(diǎn),AB=2AF,∠CBA=60°.
(1)求證:DM⊥平面MNA;
(2)若三棱錐A-DMN的體積為$\frac{\sqrt{3}}{3}$,求點(diǎn)A到平面DMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等式cos2x=2cos2x-1(x∈R)的兩邊對x求導(dǎo),得(-sin2x)•2=4cosx(-sinx),化簡后得等式sin2x=2cosxsinx.
(1)利用上述方法,試由等式(1+x)n=Cn0+Cn1x+…+Cnn-1xn-1+Cnnxn(x∈R,正整數(shù)n≥2),
①證明:n[(1+x)n-1-1]=$\sum_{k=2}^n$k$C_n^k$xk-1;
②求C101+2C102+3C103+…+10C1010
(2)對于正整數(shù)n≥3,求 $\sum_{k=1}^n$(-1)kk(k+1)Cnk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),f(2-x)=f(x),且當(dāng)x∈[0,1]時,f(x)=$\sqrt{1-{x}^{2}}$,則函數(shù)H(x)=|xex|-f(x)在區(qū)間[-7,1]上的零點(diǎn)個數(shù)為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,$\overrightarrow c$=λ$\overrightarrow a$+μ$\overrightarrow b$,若$\overrightarrow a$⊥$\overrightarrow c$,則下列結(jié)論正確的是(  )
A.λ-μ=0B.λ+μ=0C.2λ-μ=0D.2λ+μ=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若P(2,-2)為圓(x-1)2+y2=25的弦AB的中點(diǎn),則直線AB的方程是( 。
A.2x+y-2=0B.x-2y-6=0C.x+2y-6=0D.2x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在直角坐標(biāo)系xOy中,圓O:x2+y2=1,把圓O的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到軌跡方程為C.
(1)以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系下,直線l為ρcos(θ+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,求曲線C與直線l交點(diǎn)的直角坐標(biāo);
(2)若直線l1經(jīng)過點(diǎn)Q(2,1),直線l1與曲線C交于A,B兩點(diǎn),求點(diǎn)Q到A,B兩點(diǎn)的距離之積的最小值.

查看答案和解析>>

同步練習(xí)冊答案