9.設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在兩個(gè)不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時(shí),函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請(qǐng)說明理由.

分析 (1)由已知得f′(x)=3x2+2ax+b.依題意f(3)=0,f′(3)=0,解方程即可求出f(x)=x3-6x2+9x; 
(2)由函數(shù)的定義域是正數(shù)知,s>0,故極值點(diǎn)x=3不在區(qū)間[s,t]上,由此利用分類討論思想能求出不存在正數(shù)s,t滿足要求.

解答 解:(1)f′(x)=3x2+2ax+b,依題意有$\left\{\begin{array}{l}{f(3)=0}\\{f′(3)=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{27+9a+3b=0}\\{27+6a+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-6}\\{b=9}\end{array}\right.$.
∴f(x)=x3-6x2+9x;
(2)f′(x)=3x2-12x+9=3(x-1)(x-3),
由f′(x)=0,得x=1或x=3.
當(dāng)x∈(-∞,1),(3,+∞)時(shí),f′(x)>0,函數(shù)為增函數(shù),
當(dāng)x∈(1,3)時(shí),f′(x)<0,函數(shù)為減函數(shù),
∴f(x)=x3-6x2+9x的極大值為4,極小值為0.
①若極值點(diǎn)3在[s,t]上,
∵函數(shù)的值域也是[s,t],
∴0∈[s,t],這與s>0矛盾;
②若極值點(diǎn)1在[s,t]上,
∵函數(shù)的值域也是[s,t],
∴4∈[s,t],這與0<s≤1≤t<3矛盾;
③若f(x)=x3-6x2+9x在區(qū)間[s,t]上單調(diào)遞增,
即0<s<t<1或3<s<t,則$\left\{\begin{array}{l}{f(s)=s}\\{f(t)=t}\end{array}\right.$,
即s,t是方程x3-6x2+9x=x的兩個(gè)不同正根,解得$\left\{\begin{array}{l}{s=2}\\{t=4}\end{array}\right.$舍去;
④若f(x)=x3-6x2+9x在區(qū)間[s,t]上單調(diào)遞減,
即1≤s<t≤3,則$\left\{\begin{array}{l}{f(s)=t}\\{f(t)=s}\end{array}\right.$,
兩式相減并除以s-t得:(s+t)2-6(s+t)-st+10=0*,
兩式相除并開方可得:s(s-3)=t(t-3),
∴s+t=3.代入*得st=1.
∴s,t為方程x2-3x+1=0的兩根,
解得:$s=\frac{3-\sqrt{5}}{2},t=\frac{3+\sqrt{5}}{2}$.
綜上,存在$s=\frac{3-\sqrt{5}}{2},t=\frac{3+\sqrt{5}}{2}$滿足條件.

點(diǎn)評(píng) 本題考查函數(shù)解析式的求法,考查函數(shù)的極值的求法,考查滿足條件的正數(shù)是否存在的判斷與求法,關(guān)鍵是注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用,屬難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=$\frac{1}{2}$AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).則SN與平面CMN所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\frac{1}{2}$x2-2ax+ln x存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知曲線f(x)=ex-4tx+1上存在與直線y=$\frac{1}{3}$x垂直的切線,則實(shí)數(shù)t的取值范圍是( 。
A.t>$\frac{3}{4}$B.t≤$\frac{3}{4}$C.t>-$\frac{1}{12}$D.t≤-$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):A1(x1,y1),A2(x2,y2),…,A6(x6,y6)的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),(即橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng)),如表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a15=-4,a2016=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點(diǎn),AM=AB,DM=DC,SM⊥AD.
(Ⅰ)證明:CM⊥SB;
(Ⅱ)設(shè)三棱錐C-SBM與四棱錐S-ABCD的體積分別為V1與V,求$\frac{{V}_{1}}{V}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知長(zhǎng)為2的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),點(diǎn)M為線段AB的中點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn).
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)若直線l:y=2x+b與點(diǎn)M的軌跡有兩個(gè)不同的交點(diǎn)C,D,且點(diǎn)O在以線段CD為直徑的圓外,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.用0,1,2,3,4組成沒有重復(fù)數(shù)字的全部五位數(shù)中,若按從小到大的順序排列,則數(shù)字12340應(yīng)是第10個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案