分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)等于0,得到2a=x+$\frac{1}{x}$,利用基本不等式求得x+$\frac{1}{x}$的范圍即可得到所求范圍.
解答 解:由f(x)=$\frac{1}{2}$x2-2ax+lnx,
可得f'(x)=x-2a+$\frac{1}{x}$,
由題意可知存在實數(shù)x>0,使得f'(x)=x-2a+$\frac{1}{x}$=0,
即2a=x+$\frac{1}{x}$成立,
2a=x+$\frac{1}{x}$≥2(當(dāng)且僅當(dāng)x=$\frac{1}{x}$,即x=1時等號取到),
即a≥1,
即有實數(shù)a的取值范圍是[1,+∞).
故答案為:[1,+∞).
點評 本題考查了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,同時考查轉(zhuǎn)化思想的運用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}π}}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{{8\sqrt{2}π}}{3}$ | D. | $\frac{{\sqrt{3}π}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線 | B. | 圓 | C. | 橢圓 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
價格x | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y | 11 | M | 8 | 6 | 5 |
A. | 6.4 | B. | 8 | C. | 9.6 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60種 | B. | 72種 | C. | 84種 | D. | 120種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com