17.若函數(shù)f(x)=$\frac{1}{2}$x2-2ax+ln x存在垂直于y軸的切線,則實數(shù)a的取值范圍是[1,+∞).

分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)等于0,得到2a=x+$\frac{1}{x}$,利用基本不等式求得x+$\frac{1}{x}$的范圍即可得到所求范圍.

解答 解:由f(x)=$\frac{1}{2}$x2-2ax+lnx,
可得f'(x)=x-2a+$\frac{1}{x}$,
由題意可知存在實數(shù)x>0,使得f'(x)=x-2a+$\frac{1}{x}$=0,
即2a=x+$\frac{1}{x}$成立,
2a=x+$\frac{1}{x}$≥2(當(dāng)且僅當(dāng)x=$\frac{1}{x}$,即x=1時等號取到),
即a≥1,
即有實數(shù)a的取值范圍是[1,+∞).
故答案為:[1,+∞).

點評 本題考查了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,同時考查轉(zhuǎn)化思想的運用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.利用一個球體毛坯切削后得到一個四棱錐P-ABCD,其中底面四邊形ABCD是邊長為1的正方形,PA=1,且PA⊥平面ABCD,則球體毛坯體積的最小值應(yīng)為( 。
A.$\frac{{\sqrt{2}π}}{3}$B.$\frac{4π}{3}$C.$\frac{{8\sqrt{2}π}}{3}$D.$\frac{{\sqrt{3}π}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱CC1垂直于底面ABC,AC=3,AB=5,CB=4,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求三棱錐A1-B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在正方體ABCD-A1B1C1D1中,E是的AA1中點,P為地面ABCD內(nèi)一動點,設(shè)PD1、PE與地面ABCD所成的角分別為θ1、θ2(θ1、θ2均不為0),若θ12,則動點P的軌跡為哪種曲線的一部分( 。
A.直線B.C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在2016年春節(jié)期間,某市物價部門,對本市五個商場銷售的某商品一天的銷售量及其價格進行調(diào)查,五個商場的售價x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
價格x99.51010.511
銷售量y11M865
通過分析,發(fā)現(xiàn)銷售量y對商品的價格x具有線性相關(guān)關(guān)系,其回歸方程為$\widehat{y}$=-3.2x+40,則表格中m的值是( 。
A.6.4B.8C.9.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某臺小型晚會由6個節(jié)目組成,演出順序有如下要求:節(jié)目甲、乙必須相鄰且不能排在第一位,節(jié)目丙必須排在首尾,該臺晚會節(jié)目演出順序的編排方案共有( 。
A.60種B.72種C.84種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在兩個不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓M:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{^{3}}$=1,經(jīng)過點(2$\sqrt{3}$,2$\sqrt{2}$)的雙曲線N:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率與橢圓M的離心率互為倒數(shù).
(1)求雙曲線N的方程;
(2)拋物線的準線經(jīng)過雙曲線N的左焦點,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知長方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求證:AD⊥BM;
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,三棱錐M-ADE的體積為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案