已知向量
(1)若分別表示將一枚質(zhì)地均勻的骰子先后拋擲兩次時(shí)第一次、第二次正面朝上出現(xiàn)的點(diǎn)數(shù),求滿足的概率.
(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.

(1);(2).

解析試題分析:(1)擲一枚骰子的結(jié)果有6種,先后拋擲兩次,所包含的基本事件總數(shù)為6×6=36個(gè),由,所以所包含的基本事件為,所求的概率為.
(2)若在連續(xù)區(qū)間[1,6]上取值,這符合幾何概型的條件,事件的全部結(jié)果構(gòu)成的區(qū)域
Ω={(x,y)|1≤x≤6,1≤y≤6},,滿足基本事件的結(jié)果為,,所求概率.
試題解析:(1)將一枚質(zhì)地均勻的正方體骰子先后拋擲兩次,所包含的基本事件總數(shù)為6×6=36個(gè);由有-2x+y=-1,所以滿足的基本事件為(1,1),(2,3),(3,5),共3個(gè);故滿足的概率為.
(2)若x,y在連續(xù)區(qū)間[1,6]上取值,則全部基本事件的結(jié)果為Ω={(x,y)|1≤x≤6,1≤y≤6};滿足的基本事件的結(jié)果為A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};畫出圖形如下圖,

矩形的面積為S矩形=25,陰影部分的面積為S陰影=25-×2×4=21,
故滿足的概率為.
考點(diǎn):1、古典概型的求法;2、幾何概型的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
A配方的頻數(shù)分布表

指標(biāo)值分組
[90,94)
[94,98)
[98,102)
[102,106)
[106,110)
頻數(shù)
8
20
42
22
8
B配方的頻數(shù)分布表
指標(biāo)值分組
[90,94)
[94,98)
[98,102)
[102,106)
[106,110)
頻數(shù)
4
12
42
32
10
(1)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標(biāo)值t的關(guān)系式為y從用B配方生產(chǎn)的產(chǎn)品中任取一件,其利潤記為X(單位:元),求X的分布列及數(shù)學(xué)期望.(以試驗(yàn)結(jié)果中質(zhì)量指標(biāo)值落入各組的頻率作為一件產(chǎn)品的質(zhì)量指標(biāo)值落入相應(yīng)組的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

記者在街上隨機(jī)抽取10人,在一個(gè)月內(nèi)接到的垃圾短信條數(shù)統(tǒng)計(jì)的莖葉圖如下:

(Ⅰ)計(jì)算樣本的平均數(shù)及方差;
(Ⅱ)現(xiàn)從10人中隨機(jī)抽出2名,設(shè)選出者每月接到的垃圾短信在10條以下的人數(shù)為,求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋擲兩顆質(zhì)地均勻的骰子,計(jì)算:
(1)事件“兩顆骰子點(diǎn)數(shù)相同”的概率;
(2)事件“點(diǎn)數(shù)之和小于7”的概率;
(3)事件“點(diǎn)數(shù)之和等于或大于11”的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

湖南省在學(xué)業(yè)水平考查中設(shè)計(jì)了物理學(xué)科的實(shí)驗(yàn)考查方案:考生從道備選試驗(yàn)考查題中一次隨機(jī)抽取題,并按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中題便通過考查.已知道備選題中文科考生甲有題能正確完成,題不能完成;文科考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(Ⅰ)分別寫出文科考生甲正確完成題數(shù)和文科考生乙正確完成題數(shù)的概率分布列,并計(jì)算各自的數(shù)學(xué)期望;
(Ⅱ)試從兩位文科考生正確完成題數(shù)的數(shù)學(xué)期望及通過考查的概率分析比較這兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠甲、乙兩個(gè)車間包裝同一種產(chǎn)品,在自動(dòng)包裝傳送帶上每隔小時(shí)抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖所示.

(1)根據(jù)樣品數(shù)據(jù),計(jì)算甲、乙兩個(gè)車間產(chǎn)品重量的平均值與方差,并說明哪個(gè)車間的產(chǎn)品的重量相對(duì)較穩(wěn)定;
(2)若從乙車間件樣品中隨機(jī)抽取兩件,求所抽取的兩件樣品的重量之差不超過克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲有一只放有x個(gè)紅球,y個(gè)黃球,z個(gè)白球的箱子,乙有一只放有3個(gè)紅球,2個(gè)黃球,1個(gè)白球的箱子,
(1)兩個(gè)各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)甲勝,異色時(shí)乙勝。若用x、y、z表示甲勝的概率;
2)在(1)下又規(guī)定當(dāng)甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時(shí)x、y、z的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(shù)(人)
x
30
25
y
10
結(jié)算時(shí)間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率.
(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A,B,C,D四個(gè)城市,它們各自有一個(gè)著名的旅游點(diǎn),依次記為A,b,C,D,把A,B,C,D和A,b,C,D分別寫成左、右兩列.現(xiàn)在一名旅游愛好者隨機(jī)用4條線把城市與旅游點(diǎn)全部連接起來, 構(gòu)成“一一對(duì)應(yīng)”.規(guī)定某城市與自身的旅游點(diǎn)相連稱為“連對(duì)”,否則稱為“連錯(cuò)”,連對(duì)一條得2分,連錯(cuò)一條得0分.
(Ⅰ)求該旅游愛好者得2分的概率.
(Ⅱ)求所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案