分析 (1)求得f(x)的導(dǎo)數(shù),可得切線的斜率,解方程可得a,設(shè)h(x)=ex-2x,求出導(dǎo)數(shù)和單調(diào)區(qū)間,以及最小值,可得f(x)的單調(diào)性,進(jìn)而得到f(x)的最值;
(2)求得g(x)的導(dǎo)數(shù),令m(x)=ex-x-a,求出單調(diào)區(qū)間和最值,討論(i)當(dāng)1-a≥0即a≤1時(shí),(ii)當(dāng)1-a<0即a>1時(shí),求出單調(diào)性,以及最小值,解不等式即可得到a的范圍;
(3)f(x)-ex≥xlnx-x2-x+1等價(jià)于ex-x2-ex≥xlnx-x2-x+1,即ex-ex≥xlnx-x+1.等價(jià)于$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$-e+1≥0.令h(x)=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$-e+1,求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得最小值,即可得到證明.
解答 解:(1)∵f′(x)=ex-2x-a,∴f′(0)=1-a=1,∴a=0,
∴f′(x)=ex-2x,記h(x)=ex-2x,∴h′(x)=ex-2,令h′(x)=0得x=ln2.
當(dāng)0<x<ln2時(shí),h′(x)<0,h(x)單減;當(dāng)ln2<x<1時(shí),h′(x)>0,h(x)單增,
∴h(x)min=h(ln2)=2-2ln2>0,
故f′(x)>0恒成立,所以f(x)在[0,1]上單調(diào)遞增,
∴f(x)min=f(0)=1,f(x)max=f(1)=e-1.
(2)∵g(x)=ex-$\frac{1}{2}$(x+a)2,∴g′(x)=ex-x-a.
令m(x)=ex-x-a,∴m′(x)=ex-1,
當(dāng)x≥0時(shí),m′(x)≥0,∴m(x)在[0,+∞)上單增,∴m(x)min=m(0)=1-a.
(i)當(dāng)1-a≥0即a≤1時(shí),m(x)≥0恒成立,即g′(x)≥0,∴g(x)在[0,+∞)上單增,
∴g(x)min=g(0)=1-$\frac{{a}^{2}}{2}$≥0,解得-$\sqrt{2}$≤a≤$\sqrt{2}$,所以-$\sqrt{2}$≤a≤1.
(ii)當(dāng)1-a<0即a>1時(shí),∵m(x)在[0,+∞)上單增,且m(0)=1-a<0,
當(dāng)1<a<e2-2時(shí),m(ln(a+2))=2-ln(2+a)>0,
∴?x0∈(0,ln(a+2)),使m(x0)=0,即e${\;}^{{x}_{0}}$=x0+a.
當(dāng)x∈(0,x0)時(shí),m(x)<0,即g′(x)<0,g(x)單減;
當(dāng)x∈(x0,ln(a+2))時(shí),m(x)>0,即g′(x)>0,g(x)單增.
∴g(x)min=g(x0)=e${\;}^{{x}_{0}}$-$\frac{1}{2}$(x0+a)2=e${\;}^{{x}_{0}}$-$\frac{1}{2}$e${\;}^{2{x}_{0}}$=e${\;}^{{x}_{0}}$(1-$\frac{1}{2}$e${\;}^{{x}_{0}}$)≥0,
∴e${\;}^{{x}_{0}}$≤2可得0<x0≤ln2,由e${\;}^{{x}_{0}}$=x0+a,
∴a=e${\;}^{{x}_{0}}$-x0.
記t(x)=ex-x,x∈(0,ln2],
∴t′(x)=ex-1>0,∴t(x)在(0,ln2]上單調(diào)遞增,
∴t(x)≤t(ln2)=2-2ln2,∴1<a≤2-2ln2,
綜上,a∈[-$\sqrt{2}$,2-ln2].
(3)證明:f(x)-ex≥xlnx-x2-x+1等價(jià)于ex-x2-ex≥xlnx-x2-x+1,
即ex-ex≥xlnx-x+1.
∵x>0,∴等價(jià)于$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$-e+1≥0.
令h(x)=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$-e+1,
則h′(x)=$\frac{(x-1)({e}^{x}-1)}{{x}^{2}}$.
∵x>0,∴ex-1>0.
當(dāng)0<x<1時(shí),h′(x)<0,h(x)單減;
當(dāng)x>1時(shí),h′(x)>0,h(x)單增.
∴h(x)在x=1處有極小值,即最小值,
∴h(x)≥h(1)=e-1-e+1=0,
∴a=0且x>0時(shí),不等式f(x)-ex≥xlnx-x2-x+1成立.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率、單調(diào)區(qū)間和極值、最值,考查不等式恒成立問題的解法,以及不等式的證明,注意運(yùn)用分類討論和構(gòu)造函數(shù)法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (-∞,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com