6.?dāng)S一枚骰子的試驗(yàn)中,出現(xiàn)各點(diǎn)的概率均為$\frac{1}{6}$,事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A∪$\overline{B}$($\overline{B}$表示事件B的對(duì)立事件)發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 由題意知試驗(yàn)發(fā)生包含的所有事件是6,事件A和事件B是互斥事件,看出事件A和事件B包含的基本事件數(shù),根據(jù)互斥事件和古典概型概率公式得到結(jié)果.

解答 解:∵事件B表示“小于5的點(diǎn)數(shù)出現(xiàn)”,
∴B的對(duì)立事件是“大于或等于5的點(diǎn)數(shù)出現(xiàn)”,
∴表示事件是出現(xiàn)點(diǎn)數(shù)為5和6.
∵事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,
它包含的事件是出現(xiàn)點(diǎn)數(shù)為2和4,
∴P(A∪$\overline{B}$)=$\frac{1}{3}$+$\frac{1}{3}$=$\frac{2}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查互斥事件和對(duì)立事件的概率,分清互斥事件和對(duì)立事件之間的關(guān)系,互斥事件是不可能同時(shí)發(fā)生的事件,對(duì)立事件是指一個(gè)不發(fā)生,另一個(gè)一定發(fā)生的事件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知O是邊長(zhǎng)為1正四面體ABCD內(nèi)切球的球心,且$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$+z$\overrightarrow{AD}$(x,y,z∈R),則x+y+z=$\frac{3}{4}$.$\overrightarrow{AO}$•$\overrightarrow{AB}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)證明y=f(g(x))的反函數(shù)為y=g-1(f-1(x));
(2)F(x)=f(-x),G(x)=f-1(x),若G(x)的反函數(shù)是F(x),證明f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.(2x-3y)5展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是720x3y2或-1080x2y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求函數(shù)y=x的二階導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=-x2+2a|x-1|,a>0
(1)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間及最大值;
(2)若對(duì)任意的x∈[-2,$\frac{3}{2}$],恒有|f(x)|≤2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)袋中有80個(gè)球,其中40個(gè)紅球,40個(gè)黑球,這些球除顏色外完全相同,從中任取兩球,則所取的兩球同色的概率為(  )
A.$\frac{39}{79}$B.$\frac{1}{80}$C.$\frac{1}{2}$D.$\frac{41}{80}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若一個(gè)三棱柱ABC-A1B1C1的三視圖如圖所示,主視圖與左視圖均為矩形,俯視圖為一個(gè)正三角形.
(1)求這個(gè)三棱柱的表面積;
(2)若一根細(xì)從A點(diǎn)出發(fā),在表面上繞到A1,求繩子的最短長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.
(1)求二面角A-PB-C的余弦值.
(2)在線(xiàn)段CP上是否存在一點(diǎn)E,使得DE⊥PB,若存在,求線(xiàn)段CE的長(zhǎng)度,不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案