參考數(shù)據(jù):...附:線性回歸方程中..">
【題目】如果某企業(yè)每月生豬的死亡率不超過百分之一,則該企業(yè)考核為優(yōu)秀.現(xiàn)獲得某企業(yè)2019年1月到8月的相關數(shù)據(jù)如下表所示:
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 |
月養(yǎng)殖量/千只 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 |
月利潤/十萬元 | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.5 | 7.9 | 9.1 |
生豬死亡數(shù)最/只 | 29 | 37 | 49 | 53 | 77 | 98 | 126 | 145 |
(1)求出月利潤;y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.01);
(2)若2019年9月份該企業(yè)月養(yǎng)殖量為1.4萬只,請你預估該月月利潤是多少萬元;
(3)從該企業(yè)2019年1月到8月這8個月中任意選取3個月,用X表示3個月中該企業(yè)考核獲得優(yōu)秀的個數(shù),求X的分布列和數(shù)學期望./p>
參考數(shù)據(jù):,,,
附:線性回歸方程中,,
【答案】(1)(2)預估該月月利潤是104.8萬元(3)詳見解析
【解析】
(1)根據(jù)公式可求得,進而可得回歸方程;
(2)通過回歸方程可估計9月份的月利潤;
(3)由題可知X的所有可能取值為0,1,2,3,求出概率,進而可得期望.
(1)根據(jù)參考數(shù)據(jù)可得,
所以,
故月利潤y關于月養(yǎng)殖量x的線性問歸方程為;
(2)若2019年9月份,該企業(yè)月養(yǎng)殖量為1.4萬只,
則此時,
把代入,,
所以預估該月月利潤是104.8萬元;
(3)由題中數(shù)據(jù)可知,1月,2月,3月,4月這4個月該企業(yè)考核都為優(yōu)秀,
所以X的所有可能取值為0,1,2,3
,,,
,
故X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐中,底面,是邊長為2的等邊三角形,且,,點是棱上的動點.
(I)求證:平面平面;
(Ⅱ)當線段最小時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】千百年來,我國勞動人民在生產(chǎn)實踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識天氣”的經(jīng)驗,并將這些經(jīng)驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區(qū)的天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | ||
未出現(xiàn) |
參考公式:.
臨界值表:
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認為“當晚下雨”與“‘日落云里走’出現(xiàn)”有關?
(2)小波同學為進一步認識其規(guī)律,對相關數(shù)據(jù)進行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再從這天中隨機抽出天進行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一副斜邊長為10的直角三角板,將它們斜邊重合,若將其中一個三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設橢圓的上、下頂點分別為, 點是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,若四邊形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,給出四個函數(shù):①,②,③,④,又給出四個函數(shù)的圖象,則正確的匹配方案是( ).
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,將曲線繞極點逆時針旋轉(zhuǎn)后得到曲線.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線:與,分別相交于異于極點的,兩點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com