10.下列命題:
(1)若一條直線與兩個(gè)平行平面中的一個(gè)平行,那么它也與另一個(gè)平面平行;
(2)若平面α內(nèi)有不共線的三點(diǎn)到平面β的距離相等,則α∥β;
(3)過(guò)平面α外一點(diǎn)和平面α內(nèi)一點(diǎn)與平面α垂直的平面只有一個(gè);
(4)若平面α⊥平面β,α∩β=b,直線a?α,α⊥β,則a∥α.
其中正確的有(  )個(gè).
A.1B.2C.3D.4

分析 利用平面與平面平行、垂直的判定與性質(zhì),即可得出結(jié)論.

解答 解:(1)當(dāng)一條直線與兩個(gè)平行平面中的一個(gè)平面平行,則這條直線與另一平面的位置關(guān)系是一定不能相交,是平行或這條直線在這個(gè)平面內(nèi),故不正確;
(2)若平面α內(nèi)有不共線的三個(gè)點(diǎn)到平面β距離相等,可能平行,也可能相交,不正確;
(3)當(dāng)平面α外一點(diǎn)和平面α內(nèi)一點(diǎn)連線不垂直于平面時(shí),此時(shí)過(guò)此連線存在唯一一個(gè)與平面α垂直的平面;當(dāng)平面α外一點(diǎn)和平面α內(nèi)一點(diǎn)連線垂直于平面時(shí),則根據(jù)面面垂直的判定定理,可作無(wú)數(shù)個(gè)與平面α垂直的平面,故不正確;
(4)∵平面α⊥平面β,直線a⊥β,∴平面α內(nèi)存在直線a′與直線a平行,∵a?α,a′?α,且a∥a′,∴a∥平面α,正確.
故選:A.

點(diǎn)評(píng) 本題主要考查了兩平面的位置關(guān)系及線面平行的判定等概念,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給定平面向量(1,1),那么,平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是將向量(1,1)經(jīng)過(guò)( 。┳儞Q得到的.
A.順時(shí)針旋轉(zhuǎn)60°所得B.順時(shí)針旋轉(zhuǎn)120°所得
C.逆時(shí)針旋轉(zhuǎn)60°所得D.逆時(shí)針旋轉(zhuǎn)120°所得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等邊三角形ABC的邊長(zhǎng)為1,$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{CB}$=$\overrightarrow b$,$\overrightarrow{CA}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.復(fù)數(shù)z=$\frac{2+4i}{1-i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)等于( 。
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.f(x)=tan2x是(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,$\overrightarrow{AB}$=(2,2),$\overrightarrow{AC}$=(1,k),若∠B=90°,則k值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx,則二項(xiàng)式($\sqrt{t}$-$\frac{a}{6t}$)a展開(kāi)式中的常數(shù)項(xiàng)是15.(填數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.分解因式x3-4x2+2x+1=(x-1)$(x-\frac{3+\sqrt{13}}{2})$$(x-\frac{3-\sqrt{13}}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一信號(hào)燈閃爍時(shí)每次等可能的出現(xiàn)紅色或綠色信號(hào),在該信號(hào)燈閃爍三次中,已知有一次是綠色信號(hào),則至少有一次是紅色信號(hào)的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案