設(shè)函數(shù)f(x)=acosax(a∈R).則下列圖象可能為y=f(x)的圖象是(  )
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性排除選項,然后利用函數(shù)的周期以及函數(shù)的最值的關(guān)系判斷正確選項即可.
解答:解:函數(shù)f(x)=acosax(a∈R).
∵y=cosx是偶函數(shù),∴f(x)=acosax也是偶函數(shù),
選項A、D不正確,
對于B,函數(shù)的最大值為1,
∴a=1,則函數(shù)的周期為:2π.
∴選項B不正確;
故選:C.
點評:本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性的應(yīng)用基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l經(jīng)過點P(
1
2
,1),傾斜角α=
π
6
,在極坐標系(與直角坐標系xOy取相同的長度單位,以原點O為極點,以x軸正半軸為極軸)中,圓C的極坐標方程為ρ=2
2
cos(θ-
π
4
).
(Ⅰ)寫出直線l的參數(shù)方程,并把圓C的極坐標方程化為直角坐標方程;
(Ⅱ)設(shè)l與圓C相交于A,B兩點,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
ex-2x-1
(其中e為自對數(shù)的底數(shù)),則y=f(x)的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在空間直角坐標系中有棱長為1的正方體ABCD-A1B1C1D1,點M是線段DC1上的動點,設(shè)M(0,x,x),點M 到直線AD1的距離為d,則d關(guān)于x的函數(shù)d=f(x)的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD中,AB=3,AD=2,一質(zhì)點從AB邊上的點P0出發(fā),沿與AB的夾角為θ的方向射到邊BC上點P1后,依次反射到邊CD,DA和AB上的點P2,P3,P4處.若P4落在A、P0之間,且AP0=2,設(shè)tan θ=x,五邊形P0P1P2P3P4的面積為y,則函數(shù)y=f(x)的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個函數(shù):①f(x)=x3+x2;②f(x)=x4+x;③f(x)=sin2x+x;④f(x)=cos2x+sinx中,僅通過平移變換就能使函數(shù)圖象為奇函數(shù)或偶函數(shù)圖象的函數(shù)為(  )
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線的傾斜角為45°,在y軸上的截距為2,則此直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Rt△ABC中,∠C=90°.AC=3,BC=4,P為線段AB上的點,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,則xy的最大值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,拋物線C的參數(shù)方程為
x=t2
y=2t
(t為參數(shù)),以原點O為極點,以x軸正半軸為極軸,直角坐標系的長度單位為長度單位建立極坐標系,直線l的極坐標方程為ρsin(θ+
π
4
)=m.若直線l經(jīng)過拋物線C的焦點,則常數(shù)m=
 

查看答案和解析>>

同步練習冊答案