【題目】點(diǎn)與定點(diǎn)的距離和它到直線的距離的比是常數(shù).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過坐標(biāo)原點(diǎn)的直線交軌跡于,兩點(diǎn),軌跡上異于,的點(diǎn)滿足直線的斜率為.
(。┣笾本的斜率;
(ⅱ)求面積的最大值.
【答案】(Ⅰ)(Ⅱ)(。(ⅱ).
【解析】
(Ⅰ)利用已知條件可得等式,化簡可得曲線C的軌跡方程;
(Ⅱ)(。┰O(shè)點(diǎn),則點(diǎn),利用點(diǎn)差法即可求解;
(ⅱ)由題意轉(zhuǎn)化為,由弦長公式及點(diǎn)到直線的距離求出,利用二次函數(shù)求最值即可.
(Ⅰ)由已知得,兩邊平方并化簡得,
即點(diǎn)的軌跡的方程為:.
(Ⅱ)(。┰O(shè)點(diǎn),則點(diǎn),滿足, ①
設(shè)點(diǎn),滿足, ②
由①-②得:,
∵,,
∴.
(ⅱ)∵,關(guān)于原點(diǎn)對稱,
∴,
設(shè)直線,代入曲線化簡得:,
設(shè),,由得:,,,
,
點(diǎn)到直線的距離,
∴,
∴,當(dāng)時,
∴取到最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,,,.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:與曲線恰有3個公共點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?/span>,得到“徵”;“徵”經(jīng)過一次“益”,頻率變?yōu)樵瓉淼?/span>,得到“商”;…….依次損益交替變化,獲得了“宮、徵、商、羽、角”五個音階.據(jù)此可推得( )
A.“宮、商、角”的頻率成等比數(shù)列B.“宮、徵、商”的頻率成等比數(shù)列
C.“商、羽、角”的頻率成等比數(shù)列D.“徵、商、羽”的頻率成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:的左、右焦點(diǎn)分別為,,離心率為,過點(diǎn)的直線交橢圓于點(diǎn)、(不與左右頂點(diǎn)重合),連結(jié)、,已知周長為8.
(1)求橢圓的方程;
(2)若直線的斜率為1,求的面積;
(3)設(shè),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD的邊長等于2,點(diǎn)A,E位于平面BCD的兩側(cè),且,點(diǎn)P是AC的中點(diǎn).
(1)求證:平面
(2)求BP與平面所成的角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動,是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注微信運(yùn)動公眾號查看自己每天或每月行走的步數(shù),同時也可以和其他用戶進(jìn)行運(yùn)動量的或點(diǎn)贊.加入微信運(yùn)動后,為了讓自己的步數(shù)能領(lǐng)先于朋友,人們運(yùn)動的積極性明顯增強(qiáng),下面是某人2018年1月至2018年11月期間每月跑步的平均里程(單位:十公里)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)折線圖,下列結(jié)論正確的是( )
A. 月跑步平均里程的中位數(shù)為月份對應(yīng)的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在、月
D. 月至月的月跑步平均里程相對于月至月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式an=﹣n2+8n﹣12,前n項(xiàng)和為Sn,若n>m,則Sn﹣Sm的最大值是( )
A.5B.10C.15D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓過點(diǎn),,是兩個焦點(diǎn).以橢圓的上頂點(diǎn)為圓心作半徑為的圓,
(1)求橢圓的方程;
(2)存在過原點(diǎn)的直線,與圓分別交于,兩點(diǎn),與橢圓分別交于,兩點(diǎn)(點(diǎn)在線段上),使得,求圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在三棱錐中,平面平面ABC,,,且,.
(1)若點(diǎn)D為BP上的一動點(diǎn),求證:;
(2)若,求二面角的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com