12.(1)已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為$\frac{4\sqrt{5}}{3}$和$\frac{2\sqrt{5}}{3}$,過P作長(zhǎng)軸的垂線恰好過橢圓的一個(gè)焦點(diǎn),求橢圓的方程.
(2)雙曲線的焦距是實(shí)軸長(zhǎng)的$\sqrt{5}$倍,且一個(gè)頂點(diǎn)的坐標(biāo)為(0,2),求雙曲線的方程.

分析 (1)由橢圓的定義可知2a=$\frac{4\sqrt{5}}{3}$+$\frac{2\sqrt{5}}{3}$,求得a=$\sqrt{5}$,根據(jù)過P且與長(zhǎng)軸垂直的直線恰過橢圓的一個(gè)焦點(diǎn),利用勾股定理列式解出c的值,進(jìn)而可求得橢圓的方程;
(2)由題意可知:焦點(diǎn)在y軸上,a=2,c=$\sqrt{5}$a=2$\sqrt{5}$,根據(jù)雙曲線的性質(zhì)可知b2=c2-a2,求得b,求得雙曲線的方程.

解答 解:(1)由橢圓的定義可知:2a=$\frac{4\sqrt{5}}{3}$+$\frac{2\sqrt{5}}{3}$,a=$\sqrt{5}$,
由過P作長(zhǎng)軸的垂線恰好過橢圓的一個(gè)焦點(diǎn),
∴($\frac{4\sqrt{5}}{3}$)2-($\frac{2\sqrt{5}}{3}$)2=c2,c2=$\frac{5}{3}$,
由b2=a2-c2
∴b2=$\frac{10}{3}$,
當(dāng)焦點(diǎn)在x軸上:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{\frac{10}{3}}=1$,
當(dāng)焦點(diǎn)在y軸上:$\frac{{x}^{2}}{\frac{10}{3}}+\frac{{y}^{2}}{5}=1$,
∴橢圓的方程:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{\frac{10}{3}}=1$,$\frac{{x}^{2}}{\frac{10}{3}}+\frac{{y}^{2}}{5}=1$;
(2)由頂點(diǎn)的坐標(biāo)為(0,2),
∴焦點(diǎn)在x軸上,a=2,
由焦距是實(shí)軸長(zhǎng)的$\sqrt{5}$倍,2c=$\sqrt{5}$•2a,
∴c=$\sqrt{5}$a=2$\sqrt{5}$,
由b2=c2-a2=(2$\sqrt{5}$)2-22=16,
∴雙曲線方程為:$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{16}=1$.

點(diǎn)評(píng) 本題考查橢圓及雙曲線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單,考查橢圓及雙曲線方程的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且過點(diǎn)(1,$\frac{3}{2}$),
(1)求橢圓E的方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M;
(i)設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證k1k2為定值;
(ii)設(shè)過點(diǎn)M垂直于PB的直線為m,求證:直線m過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=($\frac{1}{2}$)|x|-sin|x|在區(qū)間[-π,π]上的零點(diǎn)個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知四棱錐S-ABCD是底面邊長(zhǎng)為$2\sqrt{3}$的菱形,且$∠BAD=\frac{π}{3}$,若$∠ASC=\frac{π}{2}$,SB=SD
(1)求該四棱錐體積的取值范圍; 
(2)當(dāng)點(diǎn)S在底面ABCD上的射影為三角形ABD的重心G時(shí),求直線SA與平面SCD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$則z=3x+3y的最小值是( 。
A.0B.9C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.?dāng)S一對(duì)不同顏色的均勻的骰子,計(jì)算:
(1)所得的點(diǎn)數(shù)中一個(gè)恰是另一個(gè)的3倍的概率;
(2)兩粒骰子向上的點(diǎn)數(shù)不相同的概率;
(3)所得點(diǎn)數(shù)的和為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{ax}{{e}^{x}}-x-\frac{1}{x}$(α∈R)在(0,+∞)上有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,已知sin(A-$\frac{π}{6}$)=cosA,且a=3,則b+c的最大值是(  )
A.6B.5C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a是實(shí)數(shù),函數(shù)f(x)=2a|x|+2x-a,若函數(shù)y=f(x)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是a<-1或a>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案