分析 對(duì)a進(jìn)行討論,判斷f(x)的單調(diào)性,根據(jù)零點(diǎn)個(gè)數(shù)得出f(x)的極大值大于零,即可解出a的范圍.
解答 解:令f(x)=0得$\frac{ax}{{e}^{x}}=x+\frac{1}{x}$,
當(dāng)a≤0時(shí),顯然$\frac{ax}{{e}^{x}}≤0$在(0,+∞)恒成立,而x+$\frac{1}{x}$≥2在(0,+∞)上恒成立,
故方程$\frac{ax}{{e}^{x}}=x+\frac{1}{x}$無(wú)解,即f(x)在(0,+∞)上無(wú)零點(diǎn),不符合題意.
當(dāng)a>0時(shí),f′(x)=$\frac{a(1-x)}{{e}^{x}}$-1+$\frac{1}{{x}^{2}}$=$\frac{(1-x)(a{x}^{2}+(1+x){e}^{x})}{{e}^{x}•{x}^{2}}$,
∵ax2+(1+x)ex>0在(0,+∞)上恒成立,
∴當(dāng)0<x<1時(shí),f′(x)>0,當(dāng)x>1時(shí),f′(x)<0.
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
且$\underset{lim}{x→0+}$f(x)=-∞,$\underset{lim}{x→+∞}$f(x)=-∞,
∵f(x)有兩個(gè)零點(diǎn),∴f(1)>0,
即$\frac{a}{e}-2>0$,解得a>2e.
點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)的個(gè)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)單調(diào)性的判斷,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | EH∥FG | B. | 四邊形EFGH是平行四邊形 | ||
C. | Ω是棱柱 | D. | Ω是棱臺(tái) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 16 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com