分析 先對f(x)去絕對值,由兩段射線有兩個零點,得到分類討論.
解答 解:∵函數(shù)f(x)=2a|x|+2x-a=$\left\{\begin{array}{l}{2(1+a)x-a\\;x≥0}\\{2(1-a)x-a\\;x<0}\end{array}\right.$
且函數(shù)f(x)過定點(0,-a)
∴①-a>0時,需滿足
$\left\{\begin{array}{l}{a+1<0}\\{1-a>0}\end{array}\right.$
此時解得:a<-1,
②當(dāng)-a<0時,需滿足
$\left\{\begin{array}{l}{a+1>0}\\{1-a<0}\end{array}\right.$
此時解得:a>1,
綜上所述:a<-1或a>1.
故答案為:a>1或a<-1.
點評 由一次函數(shù)的圖象特點,得到分類討論,由此得到答案.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{e}$ | D. | $\frac{1}{2e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的單調(diào)減區(qū)間是($\frac{2}{3}$,2) | |
B. | f(x)的極小值是-15 | |
C. | 當(dāng)a>2時,對任意的x>2且x≠a,恒有f(x)<f(a)+f′(a)(x-a) | |
D. | 函數(shù)f(x)有且只有兩個零點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m+n>0 | B. | m+n<1 | C. | m+n=1 | D. | m+n>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com