【題目】如圖所示的幾何,底為菱形,,.平面底面,,,.

1)證明:平面平面;

2)求二面角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)推導(dǎo)出,從而平面,進(jìn)而.再由,得平面,推導(dǎo)出,從而平面,由此能證明平面平面;
2)取中點(diǎn)G,從而平面,以、所在直線分別為x軸、y軸、z軸的正方向建立如圖所示的空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.

解:(1)由題意可知,

又因?yàn)槠矫?/span>底面,所以平面,

從而.

因?yàn)?/span>,所以平面,

易得,,

所以,故.

,所以平面.

平面,所以平面平面;

2)取中點(diǎn)G,相交于點(diǎn)O,連結(jié)易證平面,

、兩兩垂直,O為坐標(biāo)原點(diǎn),以、所在直線分別為x軸、y軸、z軸的正方向建立如圖所示的空間直角坐標(biāo)系,

,,

所以,.

由(1)可得平面的法向量為.

設(shè)平面的法向量為,

,得,

所以.

從而,

故二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題中:

①若向量、、是空間的一組基底,則向量、也是空間的一組基底;

②已知、、三點(diǎn)不共線,點(diǎn)為平面外任意一點(diǎn),若點(diǎn)滿足,則點(diǎn)平面

③曲線與曲線)有相同的焦點(diǎn).

④過定圓上一定點(diǎn)作圓的動(dòng)弦,為坐標(biāo)原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;

⑤若過點(diǎn)的直線交橢圓于不同的兩點(diǎn),且的中點(diǎn),則直線的方程是.

其中真命題的序號(hào)是______.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)大型噴水池的中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測(cè)得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100 m到達(dá)點(diǎn)B,在B點(diǎn)測(cè)得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點(diǎn);

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點(diǎn)EF分別為邊,的中點(diǎn),將分別沿、所在的直線進(jìn)行翻折,在翻折的過程中,下列說法錯(cuò)誤是(

A.存在某個(gè)位置,使得直線與直線所成的角為

B.存在某個(gè)位置,使得直線與直線所成的角為

C.AC兩點(diǎn)都不可能重合

D.存在某個(gè)位置,使得直線垂直于直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某水上樂園擬開發(fā)水滑梯項(xiàng)目的效果圖,考慮到空間和安全方面的原因,初步設(shè)計(jì)方案如下:如圖(2),自直立于水面的空中平臺(tái)的上端點(diǎn)P處分別向水池內(nèi)的三個(gè)不同方向建水滑道,,,水滑道的下端點(diǎn)在同一條直線上,,平分,假設(shè)水滑梯的滑道可以看成線段,均在過C且與垂直的平面內(nèi),為了滑梯的安全性,設(shè)計(jì)要求.

(1)求滑梯的高的最大值;

(2)現(xiàn)在開發(fā)商考慮把該水滑梯項(xiàng)目設(shè)計(jì)成室內(nèi)游玩項(xiàng)目,且為保證該項(xiàng)目的趣味性,設(shè)計(jì),求該滑梯裝置(即圖(2)中的幾何體)的體積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解我市特色學(xué)校的發(fā)展?fàn)顩r,某調(diào)查機(jī)構(gòu)得到如下統(tǒng)計(jì)數(shù)據(jù):

年份

2014

2015

2016

2017

2018

特色學(xué)校(百個(gè))

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根據(jù)上表數(shù)據(jù),計(jì)算的相關(guān)系數(shù),并說明的線性相關(guān)性強(qiáng)弱(已知:,則認(rèn)為線性相關(guān)性很強(qiáng);,則認(rèn)為線性相關(guān)性一般;,則認(rèn)為線性相關(guān)性較弱);

(Ⅱ)求關(guān)于的線性回歸方程,并預(yù)測(cè)我市2019年特色學(xué)校的個(gè)數(shù)(精確到個(gè)).

參考公式: ,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程為y2=-4x,直線l的方程為2x+y-4=0,在拋物線上有一動(dòng)點(diǎn)A,點(diǎn)A到y(tǒng)軸的距離為m,到直線l的距離為n,則m+n的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的單調(diào)減區(qū)間為.

1)求的值及極值;

2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案