4.已知函數(shù)f(x)=2cos(ωx-$\frac{π}{6}$)與函數(shù)g(x)=3sin(2x+φ)(0<φ<$\frac{π}{2}$)圖象的對稱中心完全相同,則函數(shù)f(x)圖象的一條對稱軸是( 。
A.x=$\frac{3}{4}$B.x=$\frac{π}{2}$C.x=$\frac{π}{4}$D.x=$\frac{π}{12}$

分析 依題意,可知函數(shù)f(x)=2cos(ωx-$\frac{π}{6}$)與函數(shù)g(x)=3sin(2x+φ)的周期相同,從而可得ω=±2;再由0<φ<$\frac{π}{2}$進(jìn)一步確定ω=2,即可求得答案.

解答 解:∵函數(shù)f(x)=2cos(ωx-$\frac{π}{6}$)與函數(shù)g(x)=3sin(2x+φ)(0<φ<$\frac{π}{2}$)圖象的對稱中心完全相同,
∴兩函數(shù)的周期相同,
∵g(x)=3sin(2x+φ)的周期T1=$\frac{2π}{2}$=π,
∴f(x)=2cos(ωx-$\frac{π}{6}$)的周期T2=$\frac{2π}{\left|ω\right|}$=π,
∴ω=±2.
若ω=2,則f(x)=2cos(2x-$\frac{π}{6}$)=2cos($\frac{π}{6}$-2x)=2sin[$\frac{π}{2}$-($\frac{π}{6}$-2x)]=2sin(2x+$\frac{π}{3}$),即φ=$\frac{π}{3}$∈(0,$\frac{π}{2}$),滿足題意;
若ω=-2,則f(x)=2cos(-2x-$\frac{π}{6}$)=2sin[$\frac{π}{2}$-(-$\frac{π}{6}$-2x)]=2sin(2x+$\frac{2π}{3}$),即φ=$\frac{2π}{3}$∉(0,$\frac{π}{2}$),不滿足題意;
∴f(x)=2cos(2x-$\frac{π}{6}$),
由2x-$\frac{π}{6}$=kπ(k∈Z),得:x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z),
當(dāng)k=0時,x=$\frac{π}{12}$就是函數(shù)f(x)圖象的一條對稱軸方程,
故選:D.

點(diǎn)評 本題考查正弦函數(shù)的圖象與性質(zhì),確定出兩函數(shù)的周期相同是突破口,也是關(guān)鍵點(diǎn),確定ω=2是難點(diǎn),想當(dāng)然地認(rèn)為ω=2,是思維不成熟的表現(xiàn),考查深刻理解題意與綜合應(yīng)用能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若S5=$\frac{31}{32}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在50瓶飲料中,有3瓶已經(jīng)過期,從中任取一瓶,取到已過期飲料的概率是$\frac{3}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知(x+1)2(x+2)2011=a0+a1(x+2)+a2(x+2)2+…+a2013(x+2)2013,求$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,a,b,c分別為角A,B,C所對的邊,若a,b,c成等差數(shù)列,則角B的取值范圍為(  )
A.(0,$\frac{π}{4}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的通項(xiàng)公式an=(-1)n(5n-3),n∈N*,求數(shù)列的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從1~9這9個數(shù)字中任取5個數(shù)組成無重復(fù)數(shù)字的數(shù),且個位、百位、萬位上的數(shù)字必須是奇數(shù)的五位數(shù)的個數(shù)是1800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.i是虛數(shù)單位,復(fù)數(shù)z滿足(1+i)z=2,則z的實(shí)部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知3tan$\frac{α}{2}$+tan2$\frac{α}{2}$=1,sinβ=3sin(2α+β),則tan(α+β)=-$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案