分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式可求sinB,利用三角形內(nèi)角和定理,誘導公式,兩角和的余弦函數(shù)公式即可計算cosC的值.
(2)由(1)利用同角三角函數(shù)基本關(guān)系式可求sinC,利用正弦定理可求AC的值,進而利用三角形面積公式即可計算得解.
解答 解:(1)∵cosB=$\frac{\sqrt{10}}{10}$.
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3\sqrt{10}}{10}$,
∴cosC=-cos(A+B)=sinAsinB-cosAcosB=$\frac{\sqrt{2}}{2}×\frac{3\sqrt{10}}{10}$-$\frac{\sqrt{2}}{2}×\frac{\sqrt{10}}{10}$=$\frac{\sqrt{5}}{5}$.
(2)∵cosC=$\frac{\sqrt{5}}{5}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{5}}{5}$,
∵AC=$\frac{BCsinB}{sinA}$=$\frac{\sqrt{5}×\frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}}$=3,
∴S△ABC=$\frac{1}{2}$BC•AC•sinC=$\frac{1}{2}×$$\sqrt{5}$×3×$\frac{2\sqrt{5}}{5}$=3.
點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,誘導公式,兩角和的余弦函數(shù)公式,正弦定理,三角形面積公式在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{4}$,+∞) | B. | [-$\frac{1}{4}$,+∞) | C. | [-$\frac{1}{4}$,0) | D. | [-$\frac{1}{4}$,0] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,3} | B. | {-1,1} | C. | (1,3) | D. | {-1,+∞} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1或9 | B. | 6 | C. | 9 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m∥n,m⊥α,則n⊥α | B. | 若m∥α,n∥α,則m∥n | C. | 若m⊥α,m∥β,則α∥β | D. | 若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com