10.已知函數(shù)f(x)=3sin(${\frac{1}{2}x+\frac{π}{6}}$),
(1)若點P(1,-$\sqrt{3}$)在角α的終邊上,求$f(2α-\frac{π}{3})$的值;
(2)若x∈[-$\frac{2π}{3}$,$\frac{4π}{3}$],求f(x)的值域.

分析 (1)由條件利用任意角的三角函數(shù)的定義求得sinα的值,可得f(2α-$\frac{π}{3}$)的值.
(2)利用正弦函數(shù)的定義域和值域,求得f(x)的值域.

解答 解:(1)∵函數(shù)f(x)=3sin(${\frac{1}{2}x+\frac{π}{6}}$),點$P(1,-\sqrt{3})$在角α的終邊上,∴$sinα=\frac{{-\sqrt{3}}}{{\sqrt{{1^2}+{{(-\sqrt{3})}^2}}}}=-\frac{{\sqrt{3}}}{2}$,∴f(2α-$\frac{π}{3}$)=3sin(α-$\frac{π}{6}$+$\frac{π}{6}$)=3sinα=-$\frac{3\sqrt{3}}{2}$.
(2)∵$x∈[-\frac{2π}{3},\frac{4π}{3}]$,∴$\frac{1}{2}x+\frac{π}{6}∈[-\frac{π}{6},\frac{5π}{6}]$,∴$-\frac{1}{2}≤sin(\frac{1}{2}x+\frac{π}{6})≤1$,
∴$-\frac{3}{2}≤3sin(\frac{1}{2}x+\frac{π}{6})≤3$,即 函數(shù)的值域為$[-\frac{3}{2},3]$.

點評 本題主要考查任意角的三角函數(shù)的定義,正弦函數(shù)的定義域和值域,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)在R上可導,其部分圖象如圖所示,設$\frac{f(2)-f(1)}{2-1}$=a,則下列不等式正確的是( 。
A.f′(1)<f′(2)<aB.f′(1)<a<f′(2)C.f′(2)<f′(1)<aD.a<f′(1)<f′(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在復平面內(nèi),復數(shù)$\frac{2i}{1-i}$對應的點到直線3x-4y+2=0距離為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若${\vec e_1}$,${\vec e_2}$是夾角為60°的兩個單位向量,則$\vec a$=2${\vec e_1}$+${\vec e_2}$;$\vec b$=-3${\vec e_1}$+2${\vec e_2}$的夾角為( 。
A.60°B.30°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知命題p:關于x的方程x2-ax+4=0有實根;命題q:關于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.近幾年來,我國地區(qū)經(jīng)常出現(xiàn)霧霾天氣,某學校為了學生的健康,對課間操活動做了如下規(guī)定:課間操時間若有霧霾則停止組織集體活動,若無霧霾則組織集體活動.預報得知,這一地區(qū)在未來一周從周一到周五5天的課間操時間出現(xiàn)霧霾的概率是:前3天均為50%,后2天均為80%,且每一天出現(xiàn)霧霾與否是相互獨立的.
(1)求未來一周5天至少一天停止組織集體活動的概率;
(2)求未來一周5天不需要停止組織集體活動的天數(shù)X的分布列;
(3)用η表示該校未來一周5天停止組織集體活動的天數(shù),記“函數(shù)f(x)=x2-ηx-1在區(qū)間(3,5)上有且只有一個零點”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.直線SC⊥面ABC,AB⊥BC,且AB=BC=1,SA=2,E為SA中點,F(xiàn)為點C在線BS上的射影.
(Ⅰ)求證:CF⊥面SAB;
(Ⅱ)求三棱錐S-CEF的體積;
(Ⅲ)求面CEF與面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若實數(shù)x滿足C18x=C183x-6,則x的取值集合為{3,6}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.微信是現(xiàn)代生活進行信息交流的重要工具,隨機對使用微信的60人進行了統(tǒng)計,得到如下數(shù)據(jù)統(tǒng)計表,每天使用微信時間在兩小時以上的人被定義為“微信達人”,不超過2兩小時的人被定義為“非微信達人”,己知“非微信達人”與“微信達人”人數(shù)比恰為3:2.
(1)確定x,y,p,q的值,并補全須率分布直方圖;
(2)為進一步了解使用微信對自己的日不工作和生活是否有影響,從“微信達人”和“非微信達人”60人中用分層抽樣的方法確定10人,若需從這10人中隨積選取3人進行問卷調(diào)查,設選取的3人中“微信達人”的人數(shù)為X,求X的分布列和數(shù)學期望.
使用微信時間(單位:小時) 頻數(shù)頻率 
 (0,0.5] 3 0.05
 (0.5,1] x p
 (1,1.5] 9 0.15
 (1.5,2] 15 0.25
 (2,2.5] 18 0.30
 (2.5,3] y q
 合計 601.00

查看答案和解析>>

同步練習冊答案