【題目】某校團委會組織某班以小組為單位利用周末時間進行一次社會實踐活動,每個小組有5名同學(xué),在活動結(jié)束后,學(xué)校團委會對該班的所有同學(xué)進行了測試,該班的A,B兩個小組所有同學(xué)得分(百分制)的莖葉圖如圖所示,其中B組一同學(xué)的分數(shù)已被污損,但知道B組學(xué)生的平均分比A組同學(xué)的平均分高一分.
(1)若在B組學(xué)生中隨機挑選1人,求其得分超過86分的概率;
(2)現(xiàn)從A、B兩組學(xué)生中分別隨機抽取1名同學(xué),設(shè)其分數(shù)分別為m、n,求的概率.
【答案】(1)(2)
【解析】
(1)求出A組學(xué)生的平均分可得B組學(xué)生的平均分,設(shè)被污損的分數(shù)為X,列方程得X,從而得到B組學(xué)生的分數(shù),其中有3人分數(shù)超過86分,由此能求出B組學(xué)生中隨機挑選1人,其得分超過86分概率.
(2)利用列舉法寫出在A、B兩組學(xué)生中隨機抽取1名同學(xué),其分數(shù)組成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.
(1)A組學(xué)生的平均分為,所以B組學(xué)生的平均分為86分
設(shè)被污損的分數(shù)為,則,解得
所以B組學(xué)生的分數(shù)為91、93、83、88、75,其中有3人分數(shù)超過86分
在B組學(xué)生中隨機挑選1人,其得分超過86分概率為.
(2)A組學(xué)生的分數(shù)分別是94、80、86、88、77,B組學(xué)生的分數(shù)為91、93、83、88、75,
在A、B兩組學(xué)生中隨機抽取1名同學(xué),其分數(shù)組成的基本事件(m,n),有
(94,91),(94,93),(94,83),(94,88),(94,75),
(80,91),(80,93),(80,83),(80,88),(80,75),
(86,91),(86,93),(86,83),(86,88),(86,75),
(88,91),(88,93),(88,83),(88,88),(88,75),
(77,91),(77,93),(77,83),(77,88),(77,75),共25個
隨機各抽取1名同學(xué)的分數(shù)滿足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10個
∴的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高中畢業(yè)班有男生900人,女生600人,學(xué)校為了對高三學(xué)生數(shù)學(xué)學(xué)習(xí)情況進行分析,從高三年級按照性別進行分層抽樣,抽取200名學(xué)生成績,統(tǒng)計數(shù)據(jù)如表所示:
分數(shù)段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 總計 |
頻數(shù) | 20 | 40 | 70 | 50 | 20 | 200 |
(1)若成績90分以上(含90分),則成績?yōu)榧案瘢埞烙嬙撔.厴I(yè)班平均成績及格學(xué)生人數(shù);
(2)如果樣本數(shù)據(jù)中,有60名女生數(shù)學(xué)成績合格,請完成如下數(shù)學(xué)成績與性別的列聯(lián)表,并判斷是否有90%的把握認為“該校學(xué)生的數(shù)學(xué)成績與性別有關(guān)”.
女生 | 男生 | 總計 | |
及格人數(shù) | 60 | ||
不及格人數(shù) | |||
總計 |
參考公式:K2= .
P(K2≥k0) | 0.10 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,是平面α內(nèi)的一組基向量,O為α內(nèi)的定點,對于α內(nèi)任意一點P,當(dāng)=x+y時,則稱有序?qū)崝?shù)對(x,y)為點P的廣義坐標(biāo).若點A、B的廣義坐標(biāo)分別為(x1,y1)(x2,y2),關(guān)于下列命題正確的是:()
A.線段A、B的中點的廣義坐標(biāo)為();
B.A、B兩點間的距離為;
C.向量平行于向量的充要條件是x1y2=x2y1;
D.向量垂直于的充要條件是x1y2+x2y1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,其中PA=PD=AD=2,∠BAD=60°,點M在線段PC上,且PM=2MC,N為AD的中點.
(1)求證:平面PAD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐P﹣NBM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且當(dāng)x∈[﹣a,1]時,不等式f(x)≤g(x)有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正項等比數(shù)列{an}中, ,a6+a7=3,則滿足a1+a2+…+an>a1a2…an的最大正整數(shù)n的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渦陽縣某華為手機專賣店對市民進行華為手機認可度的調(diào)查,在已購買華為手機的名市民中,隨機抽取名,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:
分組(歲) | 頻數(shù) |
合計 |
(1)求頻數(shù)分布表中、的值,并補全頻率分布直方圖;
(2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機宣傳活動,現(xiàn)從這人中隨機選取人各贈送一部華為手機,求這人中恰有人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位: )進行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.
(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?
(2)從所抽取的樣本中身高在和的男生中隨機再選出2人調(diào)查其平時體育鍛煉習(xí)慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com