10.函數(shù)f(x)=log2(x2-1)的單調(diào)減區(qū)間為(-∞,-1).

分析 由對(duì)數(shù)式的真數(shù)大于0,求出函數(shù)的定義域,再求出內(nèi)函數(shù)t=x2-1的減區(qū)間得答案.

解答 解:由x2-1>0,得x<-1或x>1.
令t=x2-1,則y=log2t,
內(nèi)函數(shù)t=x2-1,在(-∞,-1)上為減函數(shù),外函數(shù)y=log2t是定義域內(nèi)的增函數(shù),
∴函數(shù)f(x)=log2(x2-1)的單調(diào)減區(qū)間為:(-∞,-1).
故答案為:(-∞,-1).

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}(6-a)x-4a\\{log_a}x\end{array}\right.\begin{array}{l}(x<1)\\(x≥1)\end{array}$滿足[f(x1)-f(x2)](x1-x2)>0對(duì)任意定義域中的x1,x2成立,則實(shí)數(shù)a的取值范圍是$[\frac{6}{5},6)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知(x+a)7的展開式中x4的系數(shù)為-35,則a為( 。
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(x+k)ex(k∈R).
(1)求f(x)的極值;
(2)求f(x)在x∈[0,3]上的最小值.
(3)設(shè)g(x)=f(x)+f'(x),若對(duì)?k∈[-$\frac{7}{2}$,-$\frac{3}{2}}$]及?x∈[0,2]有g(shù)(x)≥λ恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={-2,1,3,6},B={x|-2<x<4},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=kax-a-x(a>0)且a≠0)是奇函數(shù).
(1)求k的值;
(2)若f(1)>0,解關(guān)于x的不等式f(x+2)+f(x-4)>0
(3)若f(1)=$\frac{3}{2}$且對(duì)任意的x∈[1,+∞),不等式a2x+a-2x-2mf(x)+2≥0恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}前n項(xiàng)的和為Sn,且滿足a1=23,a2=-9,an+2=an+6×(-1)n+1-2.n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求當(dāng)Sn最大時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2${cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$;
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點(diǎn)$({A,\frac{1}{2}})$,若${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=4,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=2x+2+1的圖象過定點(diǎn)( 。
A.(1,2)B.(2,1)C.(-2,2)D.(-1,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案