12.某地糧食需求量逐年上升,如表是部分統(tǒng)計(jì)數(shù)據(jù):
年份(年)20022004200620082010
需求量
(萬噸)
236246257276286
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)利用(1)中所求出的直線方程預(yù)測該地2014年的糧食需求量.

分析 (1)由所給數(shù)據(jù)看出,年需求量與年份之間是近似直線上升,利用配回歸直線方程,對數(shù)據(jù)預(yù)處理,求出預(yù)處理后的回歸直線方程,從而求出對應(yīng)的回歸直線方程;
(2)利用所求的回歸直線方程,計(jì)算2014年的糧食需求量即可.

解答 解:(1)由所給數(shù)據(jù)看出,年需求量與年份之間是近似直線上升,下面來求回歸直線方程,先將數(shù)據(jù)預(yù)處理如下:

年份-2 006-4-2024
需求量-257-21-1101929
由預(yù)處理后的數(shù)據(jù),容易算得$\overline{x}$=0,$\overline{y}$=3.2,
$\stackrel{∧}$=$\frac{(-4)×(-21)+(-2)×(-11)+2×19+4×29}{(-4)^{2}+(-2)^{2}+{0}^{2+}{2}^{2+}{4}^{2}}$6.5,$\stackrel{∧}{a}$=3.2;
由上述計(jì)算結(jié)果,知所求回歸直線方程為
$\stackrel{∧}{y}$-257=b(x-2006)+a=6.5(x-2006)+3.2,
即$\stackrel{∧}{y}$=6.5(x-2006)+260.2;
(2)利用所求得的直線方程,可預(yù)測2014年的糧食需求量為
6.5×(2014-2006)+260.2=6.5×8+260.2=312.2(萬噸).

點(diǎn)評 本題考查了求線性回歸方程以及利用回歸直線方程預(yù)測結(jié)果的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.cos89°cos1°+sin91°sin181°=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知m=3$\int_0^π$sinxdx,則二項(xiàng)式(a+2b-3c)m的展開式中ab2cm-3的系數(shù)為-6480.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若ccosB-bcosC=$\frac{1}{3}$a.
(Ⅰ)證明:tanC=2tanB;
(Ⅱ)若a=3,tanA=$\frac{9}{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,角A,B,C分別對應(yīng)邊a,b,c,且a=2bsin A,則cos A-sin C的取值范圍是(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知如下六個函數(shù):y=x,y=x2,y=lnx,y=2x,y=sinx,y=cosx,從中選出兩個函數(shù)記為f(x)和g(x),若F(x)=f(x)+g(x)的圖象如圖所示,則F(x)=2x+sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=logax(a>0,a≠1),若f(x1)-f(x2)=1,則f(x${\;}_{1}^{2}$)-f(x${\;}_{2}^{2}$)等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在棱長為a的正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),EF與BD交于點(diǎn)G,M為棱BB1上一點(diǎn).
(1)證明:EF∥平面 A1C1D;
(2)當(dāng)B1M:MB的值為多少時,D1M⊥平面 EFB1,證明之;
(3)求點(diǎn)D到平面 EFB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2alnx+(a+1)x2+1.
(Ⅰ)當(dāng)$a=-\frac{1}{2}$時,求函數(shù)f(x)的極值;
(Ⅱ)如果對任意x1>x2>0,總有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>{x_1}+{x_2}+4$,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:$ln(n+1)>\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n>1,n∈{N^*})$.

查看答案和解析>>

同步練習(xí)冊答案