分析 將f(x1)、f(x2)解析式求出來,利用f(x1)-f(x2)=1,找出之間的關系.再化簡f(x${\;}_{1}^{2}$)-f(x${\;}_{2}^{2}$)即可得到答案.
解答 解:∵f(x)=logax(a>0,a≠1),
∴f(x1)=logax1,f(x2)=logax2,
由f(x1)-f(x2)=1,
得:logax1-logax2=1,
又∵f(x)=logax(a>0,a≠1),
∴f(x12)=2logax1,f(x22)=2logax2,
則f(x${\;}_{1}^{2}$)-f(x${\;}_{2}^{2}$)=2(logax1-logax2)=2,
故答案為:2.
點評 本題考查了對數(shù)的基本運算公式.屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{n+1}$ | B. | $\frac{2}{n+2}$ | C. | ($\frac{2}{3}$)n | D. | ($\frac{2}{3}$)n-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 18 | C. | -15 | D. | -26 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份(年) | 2002 | 2004 | 2006 | 2008 | 2010 |
需求量 (萬噸) | 236 | 246 | 257 | 276 | 286 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | C. | 奇函數(shù)或偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{5\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-\frac{1}{2},\frac{3}{2}})$ | B. | $[{1,\frac{5}{4}})$ | C. | $({1,\frac{3}{2}})$ | D. | $[{1,\frac{3}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0.5 | C. | 2 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com