分析 作出函數(shù)f(x)=$\left\{\begin{array}{l}|x|,x≤m\\{x^2}-2mx+4m,x>m\end{array}$的圖象,依題意,可得4m-m2≥m(m>0),解之即可.
解答 解:當(dāng)m>0時(shí),函數(shù)f(x)=$\left\{\begin{array}{l}|x|,x≤m\\{x^2}-2mx+4m,x>m\end{array}$的圖象如下:
∵x>m時(shí),f(x)=x2-2mx+4m=(x-m)2+4m-m2>4m-m2,
∴要使得關(guān)于x的方程f(x)=b至多有兩個(gè)不同的根,
必須4m-m2≥m(m>0),
即m2≤3m(m>0),
解得0<m≤3,
∴m的取值范圍是:(0,3],
故答案為:(0,3].
點(diǎn)評 本題考查根的存在性及根的個(gè)數(shù)判斷,數(shù)形結(jié)合思想的運(yùn)用是關(guān)鍵,分析得到4m-m2≥m(m>0)是難點(diǎn),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,3) | B. | (-3,3) | C. | (-2,2) | D. | (-3,4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com