已知:A(cosx,sinx),B(1,1),數(shù)學公式+數(shù)學公式=數(shù)學公式,f(x)=數(shù)學公式
(Ⅰ)求f(x)的對稱軸和對稱中心;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

解:(Ⅰ).由題設(shè)知,=(cosx,sinx),…(2分)
=(1,1),則 =+=(1+cosx,1+sinx).…(3分)
∴f(x)==(1+cosx)2+(1+sinx)2 =3+2(sinx+cosx)=3+2sin(x+).…(5分)
由x+=kπ+,k∈z,即對稱軸是 x=kπ+,k∈z.…(7分)
對稱中心橫坐標滿足x+=kπ,k∈z,
即 x=kπ-,k∈z,故對稱中心是(kπ-,3),k∈z.…(9分)
(Ⅱ)當2kπ-≤x+≤2kπ+,k∈z時,f(x)單調(diào)遞增,…(10分)
即 2kπ-≤x≤2kπ+,k∈z,
∴f(x)的單增區(qū)間是[2kπ-,2kπ+],k∈z.…(12分)
分析:(Ⅰ)先求出 的坐標,化簡可得f(x)==3+2sin(x+),由此求得對稱軸和對稱中心.
(Ⅱ)令2kπ-≤x+≤2kπ+,k∈z,求得x的范圍,即可得到f(x)的單增區(qū)間.
點評:本題主要考查兩個向量的數(shù)量積的運算,兩個向量坐標形式的運算,求向量的模的方法,正弦函數(shù)的對稱性和單調(diào)性,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosx-3,sinx),
b
=(cosx,sinx-3),f(x)=
a
b

(1)若x∈[2π,3π],求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈(-
π
4
,
π
4
),且f(x)=-1,求tan2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx)
(1)當x∈[
π
2
,
8
]時,求函數(shù)f(x)=2
a
b
+1的最大值.
(2)設(shè)f(x)=2
a
b
+1,將函數(shù)y=f(x)的圖象向右平移
π
6
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosx,2cosx),向量
b
=(2cosx,sin(π-x)),若f(x)=
a
b
+1.
(I)求函數(shù)f(x)的解析式和最小正周期;
(II)若x∈[0,
π
2
]
,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知向量a=(cosx,sinx),b=(
2
2
),a•b=
8
5
,且
π
4
<x<
π
2
,則cos(x+
π
4
)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知向量
a
=(cosx,sinx),
b
=(
2
,
2
),
a
b
=
8
5
,則cos(x-
π
4
)=(  )

查看答案和解析>>

同步練習冊答案