12.若雙曲線x2+2my2=1的兩條漸近線互相垂直,則其一個(gè)焦點(diǎn)為(  )
A.(0,1)B.(-1,0)C.(0,$\sqrt{2}$)D.(-$\sqrt{2}$,0)

分析 求出雙曲線的漸近線方程,由兩直線垂直的條件,可得m,再求解雙曲線的焦點(diǎn)坐標(biāo).

解答 解:雙曲線C:x2+2my2=1(m<0),
可得漸近線方程為y=±$\frac{1}{\sqrt{-2m}}$x,
由漸近線垂直可得$\frac{1}{-2m}$=1,
解得m=-$\frac{1}{2}$,
即雙曲線方程為x2-y2=1,
可得焦點(diǎn)為($±\sqrt{2}$,0).
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的漸近線方程的運(yùn)用,考查拋物線的方程和性質(zhì),以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x+alnx,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在x=1處的切線與直線x+2y=0垂直,求a的值;
(3)在(2)的條件下,設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.用分析法證明:當(dāng)x≥4時(shí),$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F1,F(xiàn)2分別為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn),過F1的直線l與雙曲線C的左右兩支分別交于A,B兩點(diǎn),若|AB|:|BF2|:|AF2|=4:3:5,則雙曲線的離心率為(  )
A.$\sqrt{13}$B.$\sqrt{15}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知${\overrightarrow e_1}$和${\overrightarrow e_2}$是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是( 。
A.${\overrightarrow e_1}$和 ${\overrightarrow e_1}$+${\overrightarrow e_2}$B.${\overrightarrow e_1}$-2${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$
C.${\overrightarrow e_1}$+${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$D.2${\overrightarrow e_1}$-${\overrightarrow e_2}$和$\frac{1}{2}$${\overrightarrow e_2}$-${\overrightarrow e_1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)A(-3,1,-4),則點(diǎn)A關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為( 。
A.(-3,-1,4)B.(-3,-1,-4)C.(3,1,4)D.(3,-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若十進(jìn)制數(shù)26等于k進(jìn)制數(shù)32,則k等于( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.把十進(jìn)制的數(shù)101轉(zhuǎn)化為四進(jìn)制數(shù),得( 。
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,最小正周期為π的偶函數(shù)是( 。
A.y=cos(2x+$\frac{π}{2}$)B.y=cos$\frac{x}{2}$C.y=sin(2x-$\frac{π}{2}$)D.y=tanx

查看答案和解析>>

同步練習(xí)冊(cè)答案