【題目】已知函數(shù)的兩個零點(diǎn)之差的絕對值的最小值為,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則下列說法正確的是( )
①函數(shù)的最小正周期為;②函數(shù)的圖象關(guān)于點(diǎn)()對稱;
③函數(shù)的圖象關(guān)于直線對稱;④函數(shù)在上單調(diào)遞增.
A.①②③④B.①②C.②③④D.①③
【答案】B
【解析】
根據(jù)題意求出函數(shù)解析式,利用函數(shù)圖象平移變換法則求出函數(shù)的解析式,再由正弦函數(shù)的周期性、對稱性、單調(diào)性求解即可.
由題意知,函數(shù)的最小正周期是,
則,所以,
所以將函數(shù)的圖象向左平移個單位長度得到
函數(shù)的圖象,
即,則函數(shù)的最小正周期為,故①正確;
令,解得,
令,則,則函數(shù)的圖象關(guān)于點(diǎn)對稱,故②正確;
令,解得,
令,2,得函數(shù)的圖象關(guān)于直線對稱,故③錯誤;
令,得,
所以函數(shù)在上單調(diào)遞增,故④錯誤;
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的圓心在直線上,且圓經(jīng)過點(diǎn)和點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求經(jīng)過點(diǎn)且與圓恰有1個公共點(diǎn)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.
(1)求證:平面;
(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與軸,軸分別交于,兩點(diǎn),點(diǎn)是圓上任一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩地相距,某船從地逆水到地,水速為,船在靜水中的速度為.若船每小時的燃料費(fèi)與其在靜水中速度的平方成正比,當(dāng),每小時的燃料費(fèi)為元,為了使全程燃料費(fèi)最省,船的實(shí)際速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求不等式的解集;
(2)若關(guān)于的不等式在實(shí)數(shù)范圍內(nèi)解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場比賽,每場均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽中獲勝的事件是獨(dú)立的,并且獲勝的概率均為.
(1)求這支籃球隊(duì)首次獲勝前己經(jīng)負(fù)了兩場的概率;
(2)求這支籃球隊(duì)在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊(duì)在6場比賽中獲勝場數(shù)的均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com