已知
a
=(1,1,0),
b
=(-1,0,2),且(x
a
+
b
)⊥(
a
-
b
),則x=
 
考點(diǎn):向量的數(shù)量積判斷向量的共線與垂直
專題:空間向量及應(yīng)用
分析:利用已知條件求出x
a
+b,
a
-
b
,的坐標(biāo),然后利用數(shù)量積求解即可.
解答: 解:
a
=(1,1,0),
b
=(-1,0,2),
x
a
+
b
=(x-1,x,2)
a
-
b
=(2,1.-2).
∵(x
a
+b)⊥(
a
-
b
),
∴(2x-1)+x-4=0,
解得3x=6.
解得x=2.
故答案為:2.
點(diǎn)評(píng):本題考查空間向量的垂直,數(shù)量積的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x

(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式lnx<mx對(duì)一切x∈[a,2a](a>0)都成立,求m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,M、N分別是BC、CC1的中點(diǎn).求證:B1M⊥平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),Ox軸的非負(fù)軸為極軸建立極坐標(biāo)系Ox,已知圓C的極坐標(biāo)方程為ρ=2cosθ,點(diǎn)P(x,y)是圓C上一點(diǎn),則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-kxα-2(k,α∈R)的圖象經(jīng)過點(diǎn)(1,0),設(shè)g(x)=
f(x),x≤0
log2(x+1),x>0
,若g(t)=2,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2x,x≤0
log2x,x>0
關(guān)于x的方程是f2(x)-af(x)=0.
(1)若a=1,則方程有
 
個(gè)實(shí)數(shù)根;
(2)若方程恰有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2+
1
x2
-2)4的展開項(xiàng)中常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正數(shù),則“a+b≤2“是“
a
+
b
≤2“成立的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=
n,n為奇數(shù)
-n,n為偶數(shù)
若 an=f(n)+f(n+1),則a1+a2+…+a2014=(  )
A、-1B、2012
C、0D、-2012

查看答案和解析>>

同步練習(xí)冊(cè)答案