分析 (1)利用點(diǎn)F(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0),建立方程,即可求動(dòng)點(diǎn)P的軌跡C的方程;
(2)根據(jù)λ的取值情況討論軌跡C的形狀.
解答 解.(1)由題意kPM,kPN存在且不為零,
由${k_{PM}}•{k_{PN}}=\frac{y}{x+1}•\frac{y}{x-1}=λ$,得${x^2}-\frac{y^2}{λ}=1(λ≠0,x≠±1)$
即為動(dòng)點(diǎn)P的軌跡C的方程; (6分)
(2)①當(dāng)λ>0時(shí),軌跡C為中心在原點(diǎn).焦點(diǎn)在x軸上的雙曲線(除去頂點(diǎn));
②當(dāng)-1<λ<0時(shí),軌跡C為中心在原點(diǎn).焦點(diǎn)在x軸上的橢圓(除去長(zhǎng)軸上的兩個(gè)端點(diǎn));
③當(dāng)λ=-1時(shí),軌跡C為以原點(diǎn)為圓心1為半徑的圓(除去點(diǎn)(-1,0),(1,0));
④當(dāng)λ<-1時(shí),軌跡C為中心在原點(diǎn).焦點(diǎn)在y軸上的橢圓(除去短軸上的兩個(gè)端點(diǎn)).(12分)
點(diǎn)評(píng) 本題考查軌跡方程,考查分類討論的數(shù)學(xué)思想,確定軌跡方程是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 單位向量都相等 | |
B. | 長(zhǎng)度相等且方向相反的兩個(gè)向量不一定是共線向量 | |
C. | 若$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$>$|{\overrightarrow b}|$且$\overrightarrow a$與$\overrightarrow b$同向,則$\overrightarrow a$>$\overrightarrow b$ | |
D. | 對(duì)于任意向量$\overrightarrow a$,$\overrightarrow b$,必有$|{\overrightarrow a+\overrightarrow b}|$≤$|{\overrightarrow a}|$+$|{\overrightarrow b}|$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2sin5 | B. | -2cos5 | C. | 2sin5 | D. | 2cos5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com