20.已知平面區(qū)域M={(m,n)||m|≤3,|n|≤3}
(1)以以后兩次擲骰子得到的點(diǎn)數(shù)x,y作為橫、縱坐標(biāo),求點(diǎn)P(x,y)落在區(qū)域M內(nèi)的概率;
(2)試求方程x2+2mx-n2+9=0有兩個(gè)實(shí)數(shù)根的概率.

分析 (1)利用列舉法確定基本事件,即可求點(diǎn)P(x,y)落在區(qū)域M內(nèi)的概率;
(2)以面積為測(cè)度,求方程x2+2mx-n2+9=0有兩個(gè)實(shí)數(shù)根的概率.

解答 解:(1)先后兩次擲骰子,共有(1,1),(1,2),…,(6,6)等36個(gè)等可能的基本事件,而滿足|x|≤3,|y|≤3的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9個(gè)基本事件,記事件A:點(diǎn)P(x,y)落在區(qū)域M內(nèi),P(A)=$\frac{9}{36}$=$\frac{1}{4}$;
(2)記事件B:方程x2+2mx-n2+9=0有兩個(gè)實(shí)數(shù)根,
故△≥0,可得m2+n2≥9
又M={(m,n)||m|≤3,|n|≤3},則區(qū)域M的面積為36,區(qū)域N的面積為36-9π,
∴$P(B)=1-\frac{π}{4}$.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查古典概型,幾何概型,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn,若對(duì)?x∈N+,有$\frac{{S}_{2n}}{{S}_{n}}$<5,則q的取值范圍是(  )
A.(0,1]B.(1,2)C.[1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+3x,x<1\\ f(x-3),x≥1\end{array}\right.$,則f(4)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=loga(5-ax)(a>0,a≠1)在[1,3]上是減函數(shù),則a的取值范圍是( 。
A.$[\frac{5}{3},+∞)$B.$(\frac{1}{5},1)$C.$(1,\frac{5}{3})$D.$(1,\frac{5}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={-2,-1,0,1,2},$B=\{\left.x\right|\frac{1}{4}<{2^x}<4,x∈R\}$,則A∩B等于( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知點(diǎn)F(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知方程$\frac{x^2}{k-4}+\frac{y^2}{9-k}=1$表示橢圓,則k的取值范圍為$(4,\frac{13}{2})∪(\frac{13}{2},9)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b,c是△ABC三邊之長(zhǎng),若滿足等式a2+b2-c2=ab,則角C的大小為(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|$\frac{6}{x+1}$≥1},B={x|x2-2x-m<0},若A∩B={x|-1<x<4},則實(shí)數(shù)m的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案