12.若程序框圖如圖所示,則該程序運行后輸出的值是10000.

分析 模擬程序框圖的運行過程,得出該程序運行后輸出的算式S,分析程序運行的最后一次循環(huán),即可得出輸出的S值.

解答 解:模擬程序框圖的運行過程,得出該程序運行后輸出的算式是
S=1+3+5+…+[2(i+1)-1],
當(dāng)i=99時,滿足條件i<100,計算S=1+3+5+…+199=$\frac{100×(1+199)}{2}$=10000;
當(dāng)i=100時,不滿足條件i<100,輸出S=10000.
故答案為:10000.

點評 本題考查了循環(huán)結(jié)構(gòu)的應(yīng)用問題,解題時應(yīng)注意循環(huán)的變量計算,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.判斷下列方程是否表示圓,若是,求出圓心和半徑.
(1)x2+y2-x+$\frac{1}{4}$=0;
(2)x2+y2+20x+162=0;
(3)x2+y2+4mx-2y+5m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知3x=2,3y=4,3z=8,則x,y,z為( 。
A.等差數(shù)列B.等比數(shù)列
C.既是等差,又是等比數(shù)列D.都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.四邊形ABCD中,AC⊥BD且AC=2,BD=3,則$\overrightarrow{AB}$•$\overrightarrow{CD}$的最小值為-$\frac{13}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)y=f(x)的定義域為R,當(dāng)x>0時,f(x)>1,且對任意的x,y∈R都有f(x+y)=f(x)•f(y),則不等式f(log${\;}_{\frac{1}{2}}$x)≤$\frac{1}{f(lo{g}_{\frac{1}{2}}x+1)}$的解集為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$\frac{x^2}{m+2}$-$\frac{y^2}{m+1}$=1的離心率為$\frac{{\sqrt{7}}}{2}$,則m=2或-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\sqrt{3}π$B.$2\sqrt{3}π$C.$({3+\sqrt{3}})π$D.$({3+2\sqrt{3}})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={0,1},B={2,3},M={x|x=ab(a+b),a∈A,b∈B},則集合M的真子集的個數(shù)是( 。
A.16B.15C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知非零向量$\overrightarrow a$,$\overrightarrow b$,且$\overrightarrow a$⊥$\overrightarrow b$.求證:$\frac{{|{\overrightarrow a}|+|{\overrightarrow b}|}}{{|{\overrightarrow a+\overrightarrow b}|}}$≤$\sqrt{2}$.
(2)命題“若a1,a2∈R,a12+a22=1,則|a1+a2|≤$\sqrt{2}$.”
證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+1,
因為對一切實數(shù)x,恒有f(x)≥0,所以△≤0,從而4(a1+a22-8≤0,所以|a1+a2|≤$\sqrt{2}$.
試將上述命題推廣到n個實數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案