分析 可令x=1,y=0,代入f(x+y)=f(x)•f(y)計(jì)算可得f(0)=1,由x>0時(shí),f(x)>1,可得x<0時(shí),0<f(x)<1,再由單調(diào)性的定義,判斷f(x)在R上遞增,原不等式即為f(log${\;}_{\frac{1}{2}}$x)f(log${\;}_{\frac{1}{2}}$x+1)≤1,運(yùn)用條件可得2log${\;}_{\frac{1}{2}}$x+1≤0,運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性,解不等式可得解集.
解答 解:令x=1,y=0,代入f(x+y)=f(x)•f(y)中得:
f(1)=f(1)•f(0),
由1>0,可得f(1)>1,
可得f(0)=1,
當(dāng)x<0時(shí),-x>0,得f(-x)>1,
令y=-x,則x+y=0,代入f(x+y)=f(x)•f(y)中得,
f(x)•f(-x)=f(0)=1,
即有0<f(x)=$\frac{1}{f(-x)}$<1
設(shè)x1<x2,則x2-x1>0且f(x2-x1)>1,f(x1)>0,
則f(x2)-f(x1)=f(x2-x1+x1)-f(x1)
=f(x2-x1)•f(x1)-f(x1)
=f(x1)[f(x2-x1)-1],
由x2-x1>0,可得f(x2-x1)>1,
即f(x2-x1)-1>0,
則有f(x2)-f(x1)>0,即f(x1)<f(x2),
可得f(x)在R上單調(diào)遞增.
f(log${\;}_{\frac{1}{2}}$x)≤$\frac{1}{f(lo{g}_{\frac{1}{2}}x+1)}$即為f(log${\;}_{\frac{1}{2}}$x)f(log${\;}_{\frac{1}{2}}$x+1)≤1,
由f(0)=1,f(x)f(y)=f(x+y),可得,
f(2log${\;}_{\frac{1}{2}}$x+1)≤f(0),即為2log${\;}_{\frac{1}{2}}$x+1≤0,
即有l(wèi)og${\;}_{\frac{1}{2}}$x≤-$\frac{1}{2}$,解得x≥4.
故答案為:[4,+∞).
點(diǎn)評(píng) 本題考查抽象函數(shù)的運(yùn)用,注意運(yùn)用賦值法和函數(shù)的單調(diào)性的判斷及運(yùn)用,考查對(duì)數(shù)函數(shù)的單調(diào)性及運(yùn)用,以及化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | |
B. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 | |
C. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | |
D. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-$\frac{y^2}{4}$=1 | B. | x2-$\frac{y^2}{2}$=1 | C. | $\frac{y^2}{2}-\frac{x^2}{4}$=1 | D. | $\frac{y^2}{4}-\frac{x^2}{2}$=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com