19.?dāng)?shù)列{an}前數(shù)列n項和Sn,已知${S_n}+{a_n}+n=0(n∈{N^*})$恒成立.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.

分析 (Ⅰ)通過Sn+an+n=0與Sn-1+an-1+n-1=0作差可知2an=an-1-1,進(jìn)而變形可構(gòu)造首項、公比均為$\frac{1}{2}$的等比數(shù)列{an+1},進(jìn)而計算可得結(jié)論;
(II)通過(Ⅰ)裂項可知$\frac{1}{{2}^{n}{a}_{n}{a}_{n+1}}$=2($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),進(jìn)而并項相加即得結(jié)論.

解答 (Ⅰ)解:∵Sn+an+n=0,
∴n≥2時,Sn-1+an-1+n-1=0,
兩式相減可得,2an=an-1-1,
變形得:2(an+1)=an-1+1,
∵S1+a1+1=2a1+1=0,即${a_1}=-\frac{1}{2}$,即${a_1}+1=\frac{1}{2}$,
∴數(shù)列{an+1}是以$\frac{1}{2}$為首項、$\frac{1}{2}$為公比的等比數(shù)列,
∴${a_n}+1={(\frac{1}{2})^n}$,∴${a_n}={(\frac{1}{2})^n}-1(n∈{N^*})$;
(II)證明:由(Ⅰ)知,$\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=\frac{1}{{{2^n}(\frac{1}{2^n}-1)(\frac{1}{{{2^{n+1}}}}-1)}}=2(\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})$,
∴$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=-2(\frac{1}{{{2^1}-1}}-\frac{1}{{{2^2}-1}}+\frac{1}{{{2^2}-1}}$$-\frac{1}{{{2^3}-1}}+…+\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}})=2(\frac{1}{{{2^1}-1}}-\frac{1}{{{2^{n+1}}-1}})=2(1-\frac{1}{{{2^{n+1}}-1}})<2$,
即$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<2$.

點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,構(gòu)造等比數(shù)列是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)正項數(shù)列{an}的前n項和滿足Sn=$\frac{1}{4}$(an+1)2.求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一個袋子里裝有編號為1,2,…,6的6個相同大小的小球,其中1到3號球是紅色球,其余為黑色球.若從中任意摸出一個球,記錄它的顏色和號碼后再放回到袋子里,然后再摸出一個球,記錄它的顏色和號碼,求兩次摸出的球都是紅球,且至少有一個球的號碼是偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示的幾何體是由以正△ABC為底面的直棱柱(側(cè)棱垂直于底面的棱柱)被平面DEF所截而得,AB=2,BD=1,AF=2,CE=3,O為BC的中點.
(Ⅰ)求證:直線OA∥平面DEF;
(Ⅱ)求直線FC與平面DEF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設(shè)M是曲線C上任一點,連結(jié)OM并延長到Q,使|OM|=|MQ|.
(1)求點Q軌跡的直角坐標(biāo)方程;
(2)若直線l與點Q軌跡相交于A,B兩點,點P的直角坐標(biāo)為(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求證:$\sqrt{x}-\sqrt{x-1}<\sqrt{x-2}-\sqrt{x-3}(x≥3)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知參數(shù)方程$\left\{\begin{array}{l}{x=\frac{a(1-{t}^{2})}{1+{t}^{2}}}\\{y=\frac{2\sqrt{3}t}{1+{t}^{2}}}\end{array}\right.$(a∈R,t為參數(shù))表示離心率為$\frac{1}{2}$的橢圓C,直線l經(jīng)過C的右焦點F2,且與C交于M、N兩點.
(1)求a的值;
(2)求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.雙“十一”結(jié)束之后,某網(wǎng)站針對購物情況進(jìn)行了調(diào)查,參與調(diào)查的人主要集中在[20,50]歲之間,若規(guī)定:購物600(含600元)以下者,稱為“理智購物”,購物超過600元者被網(wǎng)友形象的稱為“剁手黨”,得到如下統(tǒng)計表:
分組編號年齡分組球迷所占比例
1[20,25)10000.5
2[25,30)18000.6
3[30,35)12000.5
4[35,40)a0.4
5[40,45)3000.2
6[45,50]2000.1
若參與調(diào)查的“理智購物”總?cè)藬?shù)為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人;
①從這20人中隨機(jī)抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機(jī)抽取2人,用ζ表示年齡在[20,25)之間的人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+bx滿足:①f(2)=0,②關(guān)于x的方程f(x)=x有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[0,3]上的值域.

查看答案和解析>>

同步練習(xí)冊答案