分析 由Sn=$\frac{1}{4}$(an+1)2.n=1時,a1=$\frac{1}{4}({a}_{1}+1)^{2}$,解得a1.當(dāng)n≥2時,an=Sn-Sn-1,化簡根據(jù)數(shù)列{an}是正項數(shù)列及其等差數(shù)列的通項公式即可得出.
解答 解:∵Sn=$\frac{1}{4}$(an+1)2.∴a1=$\frac{1}{4}({a}_{1}+1)^{2}$,解得a1=1.
當(dāng)n≥2時,an=Sn-Sn-1=$\frac{1}{4}$(an+1)2-$\frac{1}{4}({a}_{n-1}+1)^{2}$,
化為:(an+an-1)(an-an-1-2)=0,
∵數(shù)列{an}是正項數(shù)列,
∴an+an-1>0,an-an-1=2,
∴數(shù)列{an}是等差數(shù)列,
∴an=1+2(n-1)=2n-1.
點評 本題考查了遞推關(guān)系、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,15] | B. | [-18,7] | C. | [-18,19] | D. | [2,19] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和②均為真命題 | B. | ①和②均為假命題 | ||
C. | ①為真命題,②為假命題 | D. | ①為假命題,②為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com